*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a(c(d(x))) -> c(x)
u(b(d(d(x)))) -> b(x)
v(a(a(x))) -> u(v(x))
v(a(c(x))) -> u(b(d(x)))
v(c(x)) -> b(x)
w(a(a(x))) -> u(w(x))
w(a(c(x))) -> u(b(d(x)))
w(c(x)) -> b(x)
Weak DP Rules:
Weak TRS Rules:
Signature:
{a/1,u/1,v/1,w/1} / {b/1,c/1,d/1}
Obligation:
Innermost
basic terms: {a,u,v,w}/{b,c,d}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
a#(c(d(x))) -> c_1()
u#(b(d(d(x)))) -> c_2()
v#(a(a(x))) -> c_3(u#(v(x)),v#(x))
v#(a(c(x))) -> c_4(u#(b(d(x))))
v#(c(x)) -> c_5()
w#(a(a(x))) -> c_6(u#(w(x)),w#(x))
w#(a(c(x))) -> c_7(u#(b(d(x))))
w#(c(x)) -> c_8()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a#(c(d(x))) -> c_1()
u#(b(d(d(x)))) -> c_2()
v#(a(a(x))) -> c_3(u#(v(x)),v#(x))
v#(a(c(x))) -> c_4(u#(b(d(x))))
v#(c(x)) -> c_5()
w#(a(a(x))) -> c_6(u#(w(x)),w#(x))
w#(a(c(x))) -> c_7(u#(b(d(x))))
w#(c(x)) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
a(c(d(x))) -> c(x)
u(b(d(d(x)))) -> b(x)
v(a(a(x))) -> u(v(x))
v(a(c(x))) -> u(b(d(x)))
v(c(x)) -> b(x)
w(a(a(x))) -> u(w(x))
w(a(c(x))) -> u(b(d(x)))
w(c(x)) -> b(x)
Signature:
{a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {a#,u#,v#,w#}/{b,c,d}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
a#(c(d(x))) -> c_1()
u#(b(d(d(x)))) -> c_2()
v#(c(x)) -> c_5()
w#(c(x)) -> c_8()
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a#(c(d(x))) -> c_1()
u#(b(d(d(x)))) -> c_2()
v#(c(x)) -> c_5()
w#(c(x)) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {a#,u#,v#,w#}/{b,c,d}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:a#(c(d(x))) -> c_1()
2:S:u#(b(d(d(x)))) -> c_2()
3:S:v#(c(x)) -> c_5()
4:S:w#(c(x)) -> c_8()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {a#,u#,v#,w#}/{b,c,d}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).