*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a(c(d(x))) -> c(x) u(b(d(d(x)))) -> b(x) v(a(a(x))) -> u(v(x)) v(a(c(x))) -> u(b(d(x))) v(c(x)) -> b(x) w(a(a(x))) -> u(w(x)) w(a(c(x))) -> u(b(d(x))) w(c(x)) -> b(x) Weak DP Rules: Weak TRS Rules: Signature: {a/1,u/1,v/1,w/1} / {b/1,c/1,d/1} Obligation: Innermost basic terms: {a,u,v,w}/{b,c,d} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(a(a(x))) -> c_3(u#(v(x)),v#(x)) v#(a(c(x))) -> c_4(u#(b(d(x)))) v#(c(x)) -> c_5() w#(a(a(x))) -> c_6(u#(w(x)),w#(x)) w#(a(c(x))) -> c_7(u#(b(d(x)))) w#(c(x)) -> c_8() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(a(a(x))) -> c_3(u#(v(x)),v#(x)) v#(a(c(x))) -> c_4(u#(b(d(x)))) v#(c(x)) -> c_5() w#(a(a(x))) -> c_6(u#(w(x)),w#(x)) w#(a(c(x))) -> c_7(u#(b(d(x)))) w#(c(x)) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a(c(d(x))) -> c(x) u(b(d(d(x)))) -> b(x) v(a(a(x))) -> u(v(x)) v(a(c(x))) -> u(b(d(x))) v(c(x)) -> b(x) w(a(a(x))) -> u(w(x)) w(a(c(x))) -> u(b(d(x))) w(c(x)) -> b(x) Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} Obligation: Innermost basic terms: {a#,u#,v#,w#}/{b,c,d} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(c(x)) -> c_5() w#(c(x)) -> c_8() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(c(x)) -> c_5() w#(c(x)) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} Obligation: Innermost basic terms: {a#,u#,v#,w#}/{b,c,d} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:a#(c(d(x))) -> c_1() 2:S:u#(b(d(d(x)))) -> c_2() 3:S:v#(c(x)) -> c_5() 4:S:w#(c(x)) -> c_8() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} Obligation: Innermost basic terms: {a#,u#,v#,w#}/{b,c,d} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).