We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { del(.(x, .(y, z))) -> f(=(x, y), x, y, z) , f(true(), x, y, z) -> del(.(y, z)) , f(false(), x, y, z) -> .(x, del(.(y, z))) , =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following weak dependency pairs: Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } Strict Trs: { del(.(x, .(y, z))) -> f(=(x, y), x, y, z) , f(true(), x, y, z) -> del(.(y, z)) , f(false(), x, y, z) -> .(x, del(.(y, z))) , =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } Strict Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(f^#) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1} TcT has computed the following constructor-restricted matrix interpretation. [.](x1, x2) = [0] [0] [=](x1, x2) = [1] [0] [true] = [0] [0] [false] = [0] [0] [nil] = [0] [0] [u] = [0] [0] [v] = [0] [0] [and](x1, x2) = [0] [0] [del^#](x1) = [0] [0] [c_1](x1) = [1 0] x1 + [0] [0 1] [0] [f^#](x1, x2, x3, x4) = [2 0] x1 + [0] [0 0] [0] [c_2](x1) = [1 0] x1 + [0] [0 1] [0] [c_3](x1) = [1 0] x1 + [0] [0 1] [0] [=^#](x1, x2) = [0] [0] [c_4](x1, x2) = [0] [0] [c_5] = [0] [0] [c_6] = [0] [0] [c_7] = [0] [0] The order satisfies the following ordering constraints: [=(.(x, y), .(u(), v()))] = [1] [0] > [0] [0] = [and(=(x, u()), =(y, v()))] [=(.(x, y), nil())] = [1] [0] > [0] [0] = [false()] [=(nil(), .(y, z))] = [1] [0] > [0] [0] = [false()] [=(nil(), nil())] = [1] [0] > [0] [0] = [true()] [del^#(.(x, .(y, z)))] = [0] [0] ? [2] [0] = [c_1(f^#(=(x, y), x, y, z))] [f^#(true(), x, y, z)] = [0] [0] >= [0] [0] = [c_2(del^#(.(y, z)))] [f^#(false(), x, y, z)] = [0] [0] >= [0] [0] = [c_3(del^#(.(y, z)))] [=^#(.(x, y), .(u(), v()))] = [0] [0] >= [0] [0] = [c_4(=^#(x, u()), =^#(y, v()))] [=^#(.(x, y), nil())] = [0] [0] >= [0] [0] = [c_5()] [=^#(nil(), .(y, z))] = [0] [0] >= [0] [0] = [c_6()] [=^#(nil(), nil())] = [0] [0] >= [0] [0] = [c_7()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } Weak Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We estimate the number of application of {4,5,6,7} by applications of Pre({4,5,6,7}) = {}. Here rules are labeled as follows: DPs: { 1: del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , 2: f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , 3: f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) , 4: =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , 5: =^#(.(x, y), nil()) -> c_5() , 6: =^#(nil(), .(y, z)) -> c_6() , 7: =^#(nil(), nil()) -> c_7() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) } Weak DPs: { =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } Weak Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v())) , =^#(.(x, y), nil()) -> c_5() , =^#(nil(), .(y, z)) -> c_6() , =^#(nil(), nil()) -> c_7() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) } Weak Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , 2: f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , 3: f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) } Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(nil(), .(y, z)) -> false() } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [.](x1, x2) = [1] x1 + [1] x2 + [1] [=](x1, x2) = [1] x1 + [0] [true] = [4] [false] = [1] [nil] = [4] [u] = [0] [v] = [0] [and](x1, x2) = [0] [del^#](x1) = [3] x1 + [2] [c_1](x1) = [1] x1 + [2] [f^#](x1, x2, x3, x4) = [2] x1 + [3] x3 + [3] x4 + [5] [c_2](x1) = [1] x1 + [4] [c_3](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [=(.(x, y), .(u(), v()))] = [1] x + [1] y + [1] > [0] = [and(=(x, u()), =(y, v()))] [=(.(x, y), nil())] = [1] x + [1] y + [1] >= [1] = [false()] [=(nil(), .(y, z))] = [4] > [1] = [false()] [=(nil(), nil())] = [4] >= [4] = [true()] [del^#(.(x, .(y, z)))] = [3] x + [3] y + [3] z + [8] > [2] x + [3] y + [3] z + [7] = [c_1(f^#(=(x, y), x, y, z))] [f^#(true(), x, y, z)] = [3] y + [3] z + [13] > [3] y + [3] z + [9] = [c_2(del^#(.(y, z)))] [f^#(false(), x, y, z)] = [3] y + [3] z + [7] > [3] y + [3] z + [5] = [c_3(del^#(.(y, z)))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) } Weak Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z)) , f^#(true(), x, y, z) -> c_2(del^#(.(y, z))) , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v())) , =(.(x, y), nil()) -> false() , =(nil(), .(y, z)) -> false() , =(nil(), nil()) -> true() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))