We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
  , f(true(), x, y, z) -> del(.(y, z))
  , f(false(), x, y, z) -> .(x, del(.(y, z)))
  , =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z)))
  , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
  , =^#(.(x, y), nil()) -> c_5()
  , =^#(nil(), .(y, z)) -> c_6()
  , =^#(nil(), nil()) -> c_7() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z)))
  , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
  , =^#(.(x, y), nil()) -> c_5()
  , =^#(nil(), .(y, z)) -> c_6()
  , =^#(nil(), nil()) -> c_7() }
Strict Trs:
  { del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
  , f(true(), x, y, z) -> del(.(y, z))
  , f(false(), x, y, z) -> .(x, del(.(y, z)))
  , =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
    , =(.(x, y), nil()) -> false()
    , =(nil(), .(y, z)) -> false()
    , =(nil(), nil()) -> true() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z)))
  , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
  , =^#(.(x, y), nil()) -> c_5()
  , =^#(nil(), .(y, z)) -> c_6()
  , =^#(nil(), nil()) -> c_7() }
Strict Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_1) = {1}, Uargs(f^#) = {1}, Uargs(c_2) = {1},
  Uargs(c_3) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

            [.](x1, x2) = [0]           
                          [0]           
                                        
            [=](x1, x2) = [1]           
                          [0]           
                                        
                 [true] = [0]           
                          [0]           
                                        
                [false] = [0]           
                          [0]           
                                        
                  [nil] = [0]           
                          [0]           
                                        
                    [u] = [0]           
                          [0]           
                                        
                    [v] = [0]           
                          [0]           
                                        
          [and](x1, x2) = [0]           
                          [0]           
                                        
            [del^#](x1) = [0]           
                          [0]           
                                        
              [c_1](x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                                        
  [f^#](x1, x2, x3, x4) = [2 0] x1 + [0]
                          [0 0]      [0]
                                        
              [c_2](x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                                        
              [c_3](x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                                        
          [=^#](x1, x2) = [0]           
                          [0]           
                                        
          [c_4](x1, x2) = [0]           
                          [0]           
                                        
                  [c_5] = [0]           
                          [0]           
                                        
                  [c_6] = [0]           
                          [0]           
                                        
                  [c_7] = [0]           
                          [0]           

The order satisfies the following ordering constraints:

    [=(.(x, y), .(u(), v()))] =  [1]                            
                                 [0]                            
                              >  [0]                            
                                 [0]                            
                              =  [and(=(x, u()), =(y, v()))]    
                                                                
          [=(.(x, y), nil())] =  [1]                            
                                 [0]                            
                              >  [0]                            
                                 [0]                            
                              =  [false()]                      
                                                                
          [=(nil(), .(y, z))] =  [1]                            
                                 [0]                            
                              >  [0]                            
                                 [0]                            
                              =  [false()]                      
                                                                
            [=(nil(), nil())] =  [1]                            
                                 [0]                            
                              >  [0]                            
                                 [0]                            
                              =  [true()]                       
                                                                
       [del^#(.(x, .(y, z)))] =  [0]                            
                                 [0]                            
                              ?  [2]                            
                                 [0]                            
                              =  [c_1(f^#(=(x, y), x, y, z))]   
                                                                
       [f^#(true(), x, y, z)] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_2(del^#(.(y, z)))]          
                                                                
      [f^#(false(), x, y, z)] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_3(del^#(.(y, z)))]          
                                                                
  [=^#(.(x, y), .(u(), v()))] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_4(=^#(x, u()), =^#(y, v()))]
                                                                
        [=^#(.(x, y), nil())] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_5()]                        
                                                                
        [=^#(nil(), .(y, z))] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_6()]                        
                                                                
          [=^#(nil(), nil())] =  [0]                            
                                 [0]                            
                              >= [0]                            
                                 [0]                            
                              =  [c_7()]                        
                                                                

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z)))
  , =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
  , =^#(.(x, y), nil()) -> c_5()
  , =^#(nil(), .(y, z)) -> c_6()
  , =^#(nil(), nil()) -> c_7() }
Weak Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {4,5,6,7} by applications
of Pre({4,5,6,7}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
    , 2: f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
    , 3: f^#(false(), x, y, z) -> c_3(del^#(.(y, z)))
    , 4: =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
    , 5: =^#(.(x, y), nil()) -> c_5()
    , 6: =^#(nil(), .(y, z)) -> c_6()
    , 7: =^#(nil(), nil()) -> c_7() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) }
Weak DPs:
  { =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
  , =^#(.(x, y), nil()) -> c_5()
  , =^#(nil(), .(y, z)) -> c_6()
  , =^#(nil(), nil()) -> c_7() }
Weak Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ =^#(.(x, y), .(u(), v())) -> c_4(=^#(x, u()), =^#(y, v()))
, =^#(.(x, y), nil()) -> c_5()
, =^#(nil(), .(y, z)) -> c_6()
, =^#(nil(), nil()) -> c_7() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) }
Weak Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , 2: f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , 3: f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) }
Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(nil(), .(y, z)) -> false() }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
              [.](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                          
              [=](x1, x2) = [1] x1 + [0]                  
                                                          
                   [true] = [4]                           
                                                          
                  [false] = [1]                           
                                                          
                    [nil] = [4]                           
                                                          
                      [u] = [0]                           
                                                          
                      [v] = [0]                           
                                                          
            [and](x1, x2) = [0]                           
                                                          
              [del^#](x1) = [3] x1 + [2]                  
                                                          
                [c_1](x1) = [1] x1 + [2]                  
                                                          
    [f^#](x1, x2, x3, x4) = [2] x1 + [3] x3 + [3] x4 + [5]
                                                          
                [c_2](x1) = [1] x1 + [4]                  
                                                          
                [c_3](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
    [=(.(x, y), .(u(), v()))] =  [1] x + [1] y + [1]         
                              >  [0]                         
                              =  [and(=(x, u()), =(y, v()))] 
                                                             
          [=(.(x, y), nil())] =  [1] x + [1] y + [1]         
                              >= [1]                         
                              =  [false()]                   
                                                             
          [=(nil(), .(y, z))] =  [4]                         
                              >  [1]                         
                              =  [false()]                   
                                                             
            [=(nil(), nil())] =  [4]                         
                              >= [4]                         
                              =  [true()]                    
                                                             
       [del^#(.(x, .(y, z)))] =  [3] x + [3] y + [3] z + [8] 
                              >  [2] x + [3] y + [3] z + [7] 
                              =  [c_1(f^#(=(x, y), x, y, z))]
                                                             
       [f^#(true(), x, y, z)] =  [3] y + [3] z + [13]        
                              >  [3] y + [3] z + [9]         
                              =  [c_2(del^#(.(y, z)))]       
                                                             
      [f^#(false(), x, y, z)] =  [3] y + [3] z + [7]         
                              >  [3] y + [3] z + [5]         
                              =  [c_3(del^#(.(y, z)))]       
                                                             

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
  , f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
  , f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) }
Weak Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ del^#(.(x, .(y, z))) -> c_1(f^#(=(x, y), x, y, z))
, f^#(true(), x, y, z) -> c_2(del^#(.(y, z)))
, f^#(false(), x, y, z) -> c_3(del^#(.(y, z))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))
  , =(.(x, y), nil()) -> false()
  , =(nil(), .(y, z)) -> false()
  , =(nil(), nil()) -> true() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))