(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

flatten(nil) → nil
flatten(unit(x)) → flatten(x)
flatten(++(x, y)) → ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) → ++(flatten(x), flatten(y))
flatten(flatten(x)) → flatten(x)
rev(nil) → nil
rev(unit(x)) → unit(x)
rev(++(x, y)) → ++(rev(y), rev(x))
rev(rev(x)) → x
++(x, nil) → x
++(nil, y) → y
++(++(x, y), z) → ++(x, ++(y, z))

Rewrite Strategy: INNERMOST

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
flatten(unit(x)) →+ flatten(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / unit(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)