*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y car(.(x,y)) -> x cdr(.(x,y)) -> y null(.(x,y)) -> false() null(nil()) -> true() rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1} / {./2,false/0,nil/0,true/0} Obligation: Innermost basic terms: {++,car,cdr,null,rev}/{.,false,nil,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs ++#(.(x,y),z) -> c_1(++#(y,z)) ++#(nil(),y) -> c_2() car#(.(x,y)) -> c_3() cdr#(.(x,y)) -> c_4() null#(.(x,y)) -> c_5() null#(nil()) -> c_6() rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) rev#(nil()) -> c_8() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) ++#(nil(),y) -> c_2() car#(.(x,y)) -> c_3() cdr#(.(x,y)) -> c_4() null#(.(x,y)) -> c_5() null#(nil()) -> c_6() rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) rev#(nil()) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y car(.(x,y)) -> x cdr(.(x,y)) -> y null(.(x,y)) -> false() null(nil()) -> true() rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() ++#(.(x,y),z) -> c_1(++#(y,z)) ++#(nil(),y) -> c_2() car#(.(x,y)) -> c_3() cdr#(.(x,y)) -> c_4() null#(.(x,y)) -> c_5() null#(nil()) -> c_6() rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) rev#(nil()) -> c_8() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) ++#(nil(),y) -> c_2() car#(.(x,y)) -> c_3() cdr#(.(x,y)) -> c_4() null#(.(x,y)) -> c_5() null#(nil()) -> c_6() rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) rev#(nil()) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,4,5,6,8} by application of Pre({2,3,4,5,6,8}) = {1,7}. Here rules are labelled as follows: 1: ++#(.(x,y),z) -> c_1(++#(y,z)) 2: ++#(nil(),y) -> c_2() 3: car#(.(x,y)) -> c_3() 4: cdr#(.(x,y)) -> c_4() 5: null#(.(x,y)) -> c_5() 6: null#(nil()) -> c_6() 7: rev#(.(x,y)) -> c_7(++#(rev(y) ,.(x,nil())) ,rev#(y)) 8: rev#(nil()) -> c_8() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Strict TRS Rules: Weak DP Rules: ++#(nil(),y) -> c_2() car#(.(x,y)) -> c_3() cdr#(.(x,y)) -> c_4() null#(.(x,y)) -> c_5() null#(nil()) -> c_6() rev#(nil()) -> c_8() Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:++#(.(x,y),z) -> c_1(++#(y,z)) -->_1 ++#(nil(),y) -> c_2():3 -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1 2:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) -->_2 rev#(nil()) -> c_8():8 -->_1 ++#(nil(),y) -> c_2():3 -->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):2 -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1 3:W:++#(nil(),y) -> c_2() 4:W:car#(.(x,y)) -> c_3() 5:W:cdr#(.(x,y)) -> c_4() 6:W:null#(.(x,y)) -> c_5() 7:W:null#(nil()) -> c_6() 8:W:rev#(nil()) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: null#(nil()) -> c_6() 6: null#(.(x,y)) -> c_5() 5: cdr#(.(x,y)) -> c_4() 4: car#(.(x,y)) -> c_3() 8: rev#(nil()) -> c_8() 3: ++#(nil(),y) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) Strict TRS Rules: Weak DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Problem (S) Strict DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Strict TRS Rules: Weak DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) Strict TRS Rules: Weak DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: ++#(.(x,y),z) -> c_1(++#(y,z)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) Strict TRS Rules: Weak DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_7) = {1,2} Following symbols are considered usable: {++,rev,++#,car#,cdr#,null#,rev#} TcT has computed the following interpretation: p(++) = x1 + 2*x2 p(.) = 1 + x1 + x2 p(car) = 1 p(cdr) = 2 p(false) = 1 p(nil) = 0 p(null) = 4 + 2*x1 + x1^2 p(rev) = 2*x1 p(true) = 1 p(++#) = 2*x1 + 2*x1*x2 + x2 p(car#) = 0 p(cdr#) = 2 + x1 + 2*x1^2 p(null#) = 2*x1 + x1^2 p(rev#) = 1 + 2*x1 + 6*x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 1 p(c_5) = 1 p(c_6) = 0 p(c_7) = x1 + x2 p(c_8) = 1 Following rules are strictly oriented: ++#(.(x,y),z) = 2 + 2*x + 2*x*z + 2*y + 2*y*z + 3*z > 2*y + 2*y*z + z = c_1(++#(y,z)) Following rules are (at-least) weakly oriented: rev#(.(x,y)) = 9 + 14*x + 12*x*y + 6*x^2 + 14*y + 6*y^2 >= 2 + x + 4*x*y + 10*y + 6*y^2 = c_7(++#(rev(y),.(x,nil())) ,rev#(y)) ++(.(x,y),z) = 1 + x + y + 2*z >= 1 + x + y + 2*z = .(x,++(y,z)) ++(nil(),y) = 2*y >= y = y rev(.(x,y)) = 2 + 2*x + 2*y >= 2 + 2*x + 2*y = ++(rev(y),.(x,nil())) rev(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:++#(.(x,y),z) -> c_1(++#(y,z)) -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1 2:W:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) -->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):2 -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: rev#(.(x,y)) -> c_7(++#(rev(y) ,.(x,nil())) ,rev#(y)) 1: ++#(.(x,y),z) -> c_1(++#(y,z)) *** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Strict TRS Rules: Weak DP Rules: ++#(.(x,y),z) -> c_1(++#(y,z)) Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):2 -->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):1 2:W:++#(.(x,y),z) -> c_1(++#(y,z)) -->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: ++#(.(x,y),z) -> c_1(++#(y,z)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)) -->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: rev#(.(x,y)) -> c_7(rev#(y)) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: rev#(.(x,y)) -> c_7(rev#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y rev(.(x,y)) -> ++(rev(y),.(x,nil())) rev(nil()) -> nil() Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: rev#(.(x,y)) -> c_7(rev#(y)) *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: rev#(.(x,y)) -> c_7(rev#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: rev#(.(x,y)) -> c_7(rev#(y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: rev#(.(x,y)) -> c_7(rev#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {++#,car#,cdr#,null#,rev#} TcT has computed the following interpretation: p(++) = [0] p(.) = [1] x1 + [1] x2 + [4] p(car) = [0] p(cdr) = [0] p(false) = [0] p(nil) = [0] p(null) = [1] x1 + [0] p(rev) = [1] p(true) = [1] p(++#) = [1] x1 + [1] p(car#) = [1] x1 + [8] p(cdr#) = [1] x1 + [4] p(null#) = [8] x1 + [2] p(rev#) = [4] x1 + [1] p(c_1) = [4] p(c_2) = [0] p(c_3) = [1] p(c_4) = [1] p(c_5) = [0] p(c_6) = [1] p(c_7) = [1] x1 + [12] p(c_8) = [2] Following rules are strictly oriented: rev#(.(x,y)) = [4] x + [4] y + [17] > [4] y + [13] = c_7(rev#(y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: rev#(.(x,y)) -> c_7(rev#(y)) Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: rev#(.(x,y)) -> c_7(rev#(y)) Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:rev#(.(x,y)) -> c_7(rev#(y)) -->_1 rev#(.(x,y)) -> c_7(rev#(y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: rev#(.(x,y)) -> c_7(rev#(y)) *** 1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0} Obligation: Innermost basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).