*** 1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
car(.(x,y)) -> x
cdr(.(x,y)) -> y
null(.(x,y)) -> false()
null(nil()) -> true()
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Weak DP Rules:
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1} / {./2,false/0,nil/0,true/0}
Obligation:
Innermost
basic terms: {++,car,cdr,null,rev}/{.,false,nil,true}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
++#(.(x,y),z) -> c_1(++#(y,z))
++#(nil(),y) -> c_2()
car#(.(x,y)) -> c_3()
cdr#(.(x,y)) -> c_4()
null#(.(x,y)) -> c_5()
null#(nil()) -> c_6()
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
rev#(nil()) -> c_8()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
++#(nil(),y) -> c_2()
car#(.(x,y)) -> c_3()
cdr#(.(x,y)) -> c_4()
null#(.(x,y)) -> c_5()
null#(nil()) -> c_6()
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
rev#(nil()) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
car(.(x,y)) -> x
cdr(.(x,y)) -> y
null(.(x,y)) -> false()
null(nil()) -> true()
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
++#(.(x,y),z) -> c_1(++#(y,z))
++#(nil(),y) -> c_2()
car#(.(x,y)) -> c_3()
cdr#(.(x,y)) -> c_4()
null#(.(x,y)) -> c_5()
null#(nil()) -> c_6()
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
rev#(nil()) -> c_8()
*** 1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
++#(nil(),y) -> c_2()
car#(.(x,y)) -> c_3()
cdr#(.(x,y)) -> c_4()
null#(.(x,y)) -> c_5()
null#(nil()) -> c_6()
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
rev#(nil()) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{2,3,4,5,6,8}
by application of
Pre({2,3,4,5,6,8}) = {1,7}.
Here rules are labelled as follows:
1: ++#(.(x,y),z) -> c_1(++#(y,z))
2: ++#(nil(),y) -> c_2()
3: car#(.(x,y)) -> c_3()
4: cdr#(.(x,y)) -> c_4()
5: null#(.(x,y)) -> c_5()
6: null#(nil()) -> c_6()
7: rev#(.(x,y)) -> c_7(++#(rev(y)
,.(x,nil()))
,rev#(y))
8: rev#(nil()) -> c_8()
*** 1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Strict TRS Rules:
Weak DP Rules:
++#(nil(),y) -> c_2()
car#(.(x,y)) -> c_3()
cdr#(.(x,y)) -> c_4()
null#(.(x,y)) -> c_5()
null#(nil()) -> c_6()
rev#(nil()) -> c_8()
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:++#(.(x,y),z) -> c_1(++#(y,z))
-->_1 ++#(nil(),y) -> c_2():3
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1
2:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
-->_2 rev#(nil()) -> c_8():8
-->_1 ++#(nil(),y) -> c_2():3
-->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):2
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1
3:W:++#(nil(),y) -> c_2()
4:W:car#(.(x,y)) -> c_3()
5:W:cdr#(.(x,y)) -> c_4()
6:W:null#(.(x,y)) -> c_5()
7:W:null#(nil()) -> c_6()
8:W:rev#(nil()) -> c_8()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
7: null#(nil()) -> c_6()
6: null#(.(x,y)) -> c_5()
5: cdr#(.(x,y)) -> c_4()
4: car#(.(x,y)) -> c_3()
8: rev#(nil()) -> c_8()
3: ++#(nil(),y) -> c_2()
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
Strict TRS Rules:
Weak DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Problem (S)
Strict DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Strict TRS Rules:
Weak DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
*** 1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
Strict TRS Rules:
Weak DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: ++#(.(x,y),z) -> c_1(++#(y,z))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
Strict TRS Rules:
Weak DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_1) = {1},
uargs(c_7) = {1,2}
Following symbols are considered usable:
{++,rev,++#,car#,cdr#,null#,rev#}
TcT has computed the following interpretation:
p(++) = x1 + 2*x2
p(.) = 1 + x1 + x2
p(car) = 1
p(cdr) = 2
p(false) = 1
p(nil) = 0
p(null) = 4 + 2*x1 + x1^2
p(rev) = 2*x1
p(true) = 1
p(++#) = 2*x1 + 2*x1*x2 + x2
p(car#) = 0
p(cdr#) = 2 + x1 + 2*x1^2
p(null#) = 2*x1 + x1^2
p(rev#) = 1 + 2*x1 + 6*x1^2
p(c_1) = x1
p(c_2) = 1
p(c_3) = 0
p(c_4) = 1
p(c_5) = 1
p(c_6) = 0
p(c_7) = x1 + x2
p(c_8) = 1
Following rules are strictly oriented:
++#(.(x,y),z) = 2 + 2*x + 2*x*z + 2*y + 2*y*z + 3*z
> 2*y + 2*y*z + z
= c_1(++#(y,z))
Following rules are (at-least) weakly oriented:
rev#(.(x,y)) = 9 + 14*x + 12*x*y + 6*x^2 + 14*y + 6*y^2
>= 2 + x + 4*x*y + 10*y + 6*y^2
= c_7(++#(rev(y),.(x,nil()))
,rev#(y))
++(.(x,y),z) = 1 + x + y + 2*z
>= 1 + x + y + 2*z
= .(x,++(y,z))
++(nil(),y) = 2*y
>= y
= y
rev(.(x,y)) = 2 + 2*x + 2*y
>= 2 + 2*x + 2*y
= ++(rev(y),.(x,nil()))
rev(nil()) = 0
>= 0
= nil()
*** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:++#(.(x,y),z) -> c_1(++#(y,z))
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1
2:W:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
-->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):2
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: rev#(.(x,y)) -> c_7(++#(rev(y)
,.(x,nil()))
,rev#(y))
1: ++#(.(x,y),z) -> c_1(++#(y,z))
*** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Strict TRS Rules:
Weak DP Rules:
++#(.(x,y),z) -> c_1(++#(y,z))
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):2
-->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):1
2:W:++#(.(x,y),z) -> c_1(++#(y,z))
-->_1 ++#(.(x,y),z) -> c_1(++#(y,z)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: ++#(.(x,y),z) -> c_1(++#(y,z))
*** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y))
-->_2 rev#(.(x,y)) -> c_7(++#(rev(y),.(x,nil())),rev#(y)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
rev#(.(x,y)) -> c_7(rev#(y))
*** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
rev#(.(x,y)) -> c_7(rev#(y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
rev(.(x,y)) -> ++(rev(y),.(x,nil()))
rev(nil()) -> nil()
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
rev#(.(x,y)) -> c_7(rev#(y))
*** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
rev#(.(x,y)) -> c_7(rev#(y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: rev#(.(x,y)) -> c_7(rev#(y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
rev#(.(x,y)) -> c_7(rev#(y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_7) = {1}
Following symbols are considered usable:
{++#,car#,cdr#,null#,rev#}
TcT has computed the following interpretation:
p(++) = [0]
p(.) = [1] x1 + [1] x2 + [4]
p(car) = [0]
p(cdr) = [0]
p(false) = [0]
p(nil) = [0]
p(null) = [1] x1 + [0]
p(rev) = [1]
p(true) = [1]
p(++#) = [1] x1 + [1]
p(car#) = [1] x1 + [8]
p(cdr#) = [1] x1 + [4]
p(null#) = [8] x1 + [2]
p(rev#) = [4] x1 + [1]
p(c_1) = [4]
p(c_2) = [0]
p(c_3) = [1]
p(c_4) = [1]
p(c_5) = [0]
p(c_6) = [1]
p(c_7) = [1] x1 + [12]
p(c_8) = [2]
Following rules are strictly oriented:
rev#(.(x,y)) = [4] x + [4] y + [17]
> [4] y + [13]
= c_7(rev#(y))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
rev#(.(x,y)) -> c_7(rev#(y))
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
rev#(.(x,y)) -> c_7(rev#(y))
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:rev#(.(x,y)) -> c_7(rev#(y))
-->_1 rev#(.(x,y)) -> c_7(rev#(y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: rev#(.(x,y)) -> c_7(rev#(y))
*** 1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{++/2,car/1,cdr/1,null/1,rev/1,++#/2,car#/1,cdr#/1,null#/1,rev#/1} / {./2,false/0,nil/0,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {++#,car#,cdr#,null#,rev#}/{.,false,nil,true}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).