*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) Weak DP Rules: Weak TRS Rules: Signature: {=/2,implies/2,not/1,or/2} / {and/2,true/0,xor/2} Obligation: Innermost basic terms: {=,implies,not,or}/{and,true,xor} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} Obligation: Innermost basic terms: {=#,implies#,not#,or#}/{and,true,xor} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} Obligation: Innermost basic terms: {=#,implies#,not#,or#}/{and,true,xor} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:=#(x,y) -> c_1() 2:S:implies#(x,y) -> c_2() 3:S:not#(x) -> c_3() 4:S:or#(x,y) -> c_4() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} Obligation: Innermost basic terms: {=#,implies#,not#,or#}/{and,true,xor} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).