KILLED
Runtime Complexity (innermost) proof of /tmp/tmpzZeKuS/2.23.xml
The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF).
0 CpxTRS
↳1 DecreasingLoopProof (⇔, 1875 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 633 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 346 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 RewriteLemmaProof (LOWER BOUND(ID), 724 ms)
↳16 BEST
↳17 typed CpxTrs
↳18 typed CpxTrs
↳19 typed CpxTrs
↳20 typed CpxTrs
(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fac(0) → 1
fac(s(x)) → *(s(x), fac(x))
floop(0, y) → y
floop(s(x), y) → floop(x, *(s(x), y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
1 → s(0)
fac(0) → s(0)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
fac(s(x)) →+ *(s(x), fac(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fac, *', floop, +'They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'
(8) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', fac, *', floop
They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
*', fac, floop
They will be analysed ascendingly in the following order:
*' < fac
*' < floop
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)Induction Base:
*'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s2_0(a), gen_0':s2_0(+(n611_0, 1))) →RΩ(1)
+'(*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)), gen_0':s2_0(a)) →IH
+'(gen_0':s2_0(*(c612_0, a)), gen_0':s2_0(a)) →LΩ(1 + a)
gen_0':s2_0(+(a, *(n611_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
fac, floop
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fac(gen_0':s2_0(+(1, n1357_0))) → *3_0, rt ∈ Ω(n13570)Induction Base:
fac(gen_0':s2_0(+(1, 0)))
Induction Step:
fac(gen_0':s2_0(+(1, +(n1357_0, 1)))) →RΩ(1)
*'(s(gen_0':s2_0(+(1, n1357_0))), fac(gen_0':s2_0(+(1, n1357_0)))) →IH
*'(s(gen_0':s2_0(+(1, n1357_0))), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
fac(gen_0':s2_0(+(1, n1357_0))) → *3_0, rt ∈ Ω(n13570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
floop
(18) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
fac(gen_0':s2_0(+(1, n1357_0))) → *3_0, rt ∈ Ω(n13570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(19) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(20) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.