(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(0') → 0'
sum(s(x)) → +'(sqr(s(x)), sum(x))
sqr(x) → *'(x, x)
sum(s(x)) → +'(*'(s(x), s(x)), sum(x))
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
sqr/0
*'/0
*'/1
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr → *'
sum(s(x)) → +'(*', sum(x))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr → *'
sum(s(x)) → +'(*', sum(x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sum
(8) Obligation:
Innermost TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sqr,
sum(
x))
sqr →
*'sum(
s(
x)) →
+'(
*',
sum(
x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))
The following defined symbols remain to be analysed:
sum
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_0':s:+'3_0(
n5_0)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
sum(gen_0':s:+'3_0(0))
Induction Step:
sum(gen_0':s:+'3_0(+(n5_0, 1))) →RΩ(1)
+'(*', sum(gen_0':s:+'3_0(n5_0))) →IH
+'(*', *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sqr,
sum(
x))
sqr →
*'sum(
s(
x)) →
+'(
*',
sum(
x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sqr,
sum(
x))
sqr →
*'sum(
s(
x)) →
+'(
*',
sum(
x))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)