(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

sum(0') → 0'
sum(s(x)) → +'(sqr(s(x)), sum(x))
sqr(x) → *'(x, x)
sum(s(x)) → +'(*'(s(x), s(x)), sum(x))

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
sqr/0
*'/0
*'/1

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr*'
sum(s(x)) → +'(*', sum(x))

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr*'
sum(s(x)) → +'(*', sum(x))

Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
sum

(8) Obligation:

Innermost TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr*'
sum(s(x)) → +'(*', sum(x))

Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'

Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))

The following defined symbols remain to be analysed:
sum

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)

Induction Base:
sum(gen_0':s:+'3_0(0))

Induction Step:
sum(gen_0':s:+'3_0(+(n5_0, 1))) →RΩ(1)
+'(*', sum(gen_0':s:+'3_0(n5_0))) →IH
+'(*', *4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr*'
sum(s(x)) → +'(*', sum(x))

Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'

Lemmas:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)

(13) BOUNDS(n^1, INF)

(14) Obligation:

Innermost TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sqr, sum(x))
sqr*'
sum(s(x)) → +'(*', sum(x))

Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: *' → 0':s:+' → 0':s:+'
sqr :: *'
*' :: *'
hole_0':s:+'1_0 :: 0':s:+'
hole_*'2_0 :: *'
gen_0':s:+'3_0 :: Nat → 0':s:+'

Lemmas:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':s:+'3_0(0) ⇔ 0'
gen_0':s:+'3_0(+(x, 1)) ⇔ s(gen_0':s:+'3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'3_0(n5_0)) → *4_0, rt ∈ Ω(n50)

(16) BOUNDS(n^1, INF)