*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: -(x,0()) -> x -(s(x),s(y)) -> -(x,y) double(0()) -> 0() double(s(x)) -> s(s(double(x))) half(0()) -> 0() half(double(x)) -> x half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(0(),y,z) -> y if(s(x),y,z) -> z Weak DP Rules: Weak TRS Rules: Signature: {-/2,double/1,half/1,if/3} / {0/0,s/1} Obligation: Innermost basic terms: {-,double,half,if}/{0,s} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. -_0(2,2) -> 1 -_1(2,2) -> 1 0_0() -> 1 0_0() -> 2 0_1() -> 1 0_1() -> 3 0_1() -> 4 double_0(2) -> 1 double_1(2) -> 4 half_0(2) -> 1 half_1(2) -> 3 if_0(2,2,2) -> 1 s_0(2) -> 1 s_0(2) -> 2 s_1(3) -> 1 s_1(3) -> 3 s_1(3) -> 4 s_1(4) -> 3 2 -> 1 *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(s(x),s(y)) -> -(x,y) double(0()) -> 0() double(s(x)) -> s(s(double(x))) half(0()) -> 0() half(double(x)) -> x half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(0(),y,z) -> y if(s(x),y,z) -> z Signature: {-/2,double/1,half/1,if/3} / {0/0,s/1} Obligation: Innermost basic terms: {-,double,half,if}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).