*** 1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Weak DP Rules:
Weak TRS Rules:
Signature:
{*/2,+/2,minus/1} / {0/0,p/1,s/1}
Obligation:
Innermost
basic terms: {*,+,minus}/{0,p,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
*#(0(),y) -> c_1()
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
+#(0(),y) -> c_4()
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
minus#(0()) -> c_7()
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
*#(0(),y) -> c_1()
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
+#(0(),y) -> c_4()
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
minus#(0()) -> c_7()
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,4,7}
by application of
Pre({1,4,7}) = {2,3,5,6,8,9}.
Here rules are labelled as follows:
1: *#(0(),y) -> c_1()
2: *#(p(x),y) -> c_2(+#(*(x,y)
,minus(y))
,*#(x,y)
,minus#(y))
3: *#(s(x),y) -> c_3(+#(*(x,y),y)
,*#(x,y))
4: +#(0(),y) -> c_4()
5: +#(p(x),y) -> c_5(+#(x,y))
6: +#(s(x),y) -> c_6(+#(x,y))
7: minus#(0()) -> c_7()
8: minus#(p(x)) -> c_8(minus#(x))
9: minus#(s(x)) -> c_9(minus#(x))
*** 1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Strict TRS Rules:
Weak DP Rules:
*#(0(),y) -> c_1()
+#(0(),y) -> c_4()
minus#(0()) -> c_7()
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
-->_3 minus#(s(x)) -> c_9(minus#(x)):6
-->_3 minus#(p(x)) -> c_8(minus#(x)):5
-->_1 +#(s(x),y) -> c_6(+#(x,y)):4
-->_1 +#(p(x),y) -> c_5(+#(x,y)):3
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2
-->_3 minus#(0()) -> c_7():9
-->_1 +#(0(),y) -> c_4():8
-->_2 *#(0(),y) -> c_1():7
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):1
2:S:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):4
-->_1 +#(p(x),y) -> c_5(+#(x,y)):3
-->_1 +#(0(),y) -> c_4():8
-->_2 *#(0(),y) -> c_1():7
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):1
3:S:+#(p(x),y) -> c_5(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):4
-->_1 +#(0(),y) -> c_4():8
-->_1 +#(p(x),y) -> c_5(+#(x,y)):3
4:S:+#(s(x),y) -> c_6(+#(x,y))
-->_1 +#(0(),y) -> c_4():8
-->_1 +#(s(x),y) -> c_6(+#(x,y)):4
-->_1 +#(p(x),y) -> c_5(+#(x,y)):3
5:S:minus#(p(x)) -> c_8(minus#(x))
-->_1 minus#(s(x)) -> c_9(minus#(x)):6
-->_1 minus#(0()) -> c_7():9
-->_1 minus#(p(x)) -> c_8(minus#(x)):5
6:S:minus#(s(x)) -> c_9(minus#(x))
-->_1 minus#(0()) -> c_7():9
-->_1 minus#(s(x)) -> c_9(minus#(x)):6
-->_1 minus#(p(x)) -> c_8(minus#(x)):5
7:W:*#(0(),y) -> c_1()
8:W:+#(0(),y) -> c_4()
9:W:minus#(0()) -> c_7()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
7: *#(0(),y) -> c_1()
8: +#(0(),y) -> c_4()
9: minus#(0()) -> c_7()
*** 1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: *#(p(x),y) -> c_2(+#(*(x,y)
,minus(y))
,*#(x,y)
,minus#(y))
2: *#(s(x),y) -> c_3(+#(*(x,y),y)
,*#(x,y))
5: minus#(p(x)) -> c_8(minus#(x))
6: minus#(s(x)) -> c_9(minus#(x))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_2) = {1,2,3},
uargs(c_3) = {1,2},
uargs(c_5) = {1},
uargs(c_6) = {1},
uargs(c_8) = {1},
uargs(c_9) = {1}
Following symbols are considered usable:
{minus,*#,+#,minus#}
TcT has computed the following interpretation:
p(*) = 0
p(+) = x2^2
p(0) = 0
p(minus) = 2 + x1
p(p) = 1 + x1
p(s) = 1 + x1
p(*#) = 2 + 2*x1 + 2*x1*x2 + 2*x1^2 + 3*x2^2
p(+#) = x2
p(minus#) = x1
p(c_1) = 1
p(c_2) = x1 + x2 + x3
p(c_3) = x1 + x2
p(c_4) = 0
p(c_5) = x1
p(c_6) = x1
p(c_7) = 0
p(c_8) = x1
p(c_9) = x1
Following rules are strictly oriented:
*#(p(x),y) = 6 + 6*x + 2*x*y + 2*x^2 + 2*y + 3*y^2
> 4 + 2*x + 2*x*y + 2*x^2 + 2*y + 3*y^2
= c_2(+#(*(x,y),minus(y))
,*#(x,y)
,minus#(y))
*#(s(x),y) = 6 + 6*x + 2*x*y + 2*x^2 + 2*y + 3*y^2
> 2 + 2*x + 2*x*y + 2*x^2 + y + 3*y^2
= c_3(+#(*(x,y),y),*#(x,y))
minus#(p(x)) = 1 + x
> x
= c_8(minus#(x))
minus#(s(x)) = 1 + x
> x
= c_9(minus#(x))
Following rules are (at-least) weakly oriented:
+#(p(x),y) = y
>= y
= c_5(+#(x,y))
+#(s(x),y) = y
>= y
= c_6(+#(x,y))
minus(0()) = 2
>= 0
= 0()
minus(p(x)) = 3 + x
>= 3 + x
= s(minus(x))
minus(s(x)) = 3 + x
>= 3 + x
= p(minus(x))
*** 1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.2 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
minus#(p(x)) -> c_8(minus#(x))
minus#(s(x)) -> c_9(minus#(x))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:+#(p(x),y) -> c_5(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
2:S:+#(s(x),y) -> c_6(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
3:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
-->_3 minus#(s(x)) -> c_9(minus#(x)):6
-->_3 minus#(p(x)) -> c_8(minus#(x)):5
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
4:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
5:W:minus#(p(x)) -> c_8(minus#(x))
-->_1 minus#(s(x)) -> c_9(minus#(x)):6
-->_1 minus#(p(x)) -> c_8(minus#(x)):5
6:W:minus#(s(x)) -> c_9(minus#(x))
-->_1 minus#(s(x)) -> c_9(minus#(x)):6
-->_1 minus#(p(x)) -> c_8(minus#(x)):5
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
6: minus#(s(x)) -> c_9(minus#(x))
5: minus#(p(x)) -> c_8(minus#(x))
*** 1.1.1.1.2.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:+#(p(x),y) -> c_5(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
2:S:+#(s(x),y) -> c_6(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
3:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y))
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
4:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3
-->_1 +#(s(x),y) -> c_6(+#(x,y)):2
-->_1 +#(p(x),y) -> c_5(+#(x,y)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*** 1.1.1.1.2.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
Proof:
We decompose the input problem according to the dependency graph into the upper component
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
and a lower component
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Further, following extension rules are added to the lower component.
*#(p(x),y) -> *#(x,y)
*#(p(x),y) -> +#(*(x,y),minus(y))
*#(s(x),y) -> *#(x,y)
*#(s(x),y) -> +#(*(x,y),y)
*** 1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: *#(p(x),y) -> c_2(+#(*(x,y)
,minus(y))
,*#(x,y))
2: *#(s(x),y) -> c_3(+#(*(x,y),y)
,*#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_3) = {1,2}
Following symbols are considered usable:
{*#,+#,minus#}
TcT has computed the following interpretation:
p(*) = [5] x1 + [1]
p(+) = [4] x1 + [8]
p(0) = [0]
p(minus) = [1] x1 + [3]
p(p) = [1] x1 + [3]
p(s) = [1] x1 + [2]
p(*#) = [8] x1 + [0]
p(+#) = [0]
p(minus#) = [0]
p(c_1) = [0]
p(c_2) = [1] x1 + [1] x2 + [9]
p(c_3) = [4] x1 + [1] x2 + [0]
p(c_4) = [0]
p(c_5) = [2]
p(c_6) = [0]
p(c_7) = [1]
p(c_8) = [1] x1 + [4]
p(c_9) = [1]
Following rules are strictly oriented:
*#(p(x),y) = [8] x + [24]
> [8] x + [9]
= c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) = [8] x + [16]
> [8] x + [0]
= c_3(+#(*(x,y),y),*#(x,y))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y))
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)):1
2:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y))
-->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2
-->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: *#(p(x),y) -> c_2(+#(*(x,y)
,minus(y))
,*#(x,y))
2: *#(s(x),y) -> c_3(+#(*(x,y),y)
,*#(x,y))
*** 1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.2.1.1.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> *#(x,y)
*#(p(x),y) -> +#(*(x,y),minus(y))
*#(s(x),y) -> *#(x,y)
*#(s(x),y) -> +#(*(x,y),y)
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: +#(p(x),y) -> c_5(+#(x,y))
2: +#(s(x),y) -> c_6(+#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> *#(x,y)
*#(p(x),y) -> +#(*(x,y),minus(y))
*#(s(x),y) -> *#(x,y)
*#(s(x),y) -> +#(*(x,y),y)
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_5) = {1},
uargs(c_6) = {1}
Following symbols are considered usable:
{*,+,minus,*#,+#,minus#}
TcT has computed the following interpretation:
p(*) = x1*x2 + 2*x1^2
p(+) = 1 + x1 + x2
p(0) = 1
p(minus) = 1 + x1
p(p) = 1 + x1
p(s) = 1 + x1
p(*#) = 3 + 2*x1*x2 + 2*x1^2 + 2*x2^2
p(+#) = x1 + 2*x2
p(minus#) = x1
p(c_1) = 0
p(c_2) = 1 + x2
p(c_3) = x1
p(c_4) = 0
p(c_5) = x1
p(c_6) = x1
p(c_7) = 1
p(c_8) = 0
p(c_9) = 0
Following rules are strictly oriented:
+#(p(x),y) = 1 + x + 2*y
> x + 2*y
= c_5(+#(x,y))
+#(s(x),y) = 1 + x + 2*y
> x + 2*y
= c_6(+#(x,y))
Following rules are (at-least) weakly oriented:
*#(p(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2
>= 3 + 2*x*y + 2*x^2 + 2*y^2
= *#(x,y)
*#(p(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2
>= 2 + x*y + 2*x^2 + 2*y
= +#(*(x,y),minus(y))
*#(s(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2
>= 3 + 2*x*y + 2*x^2 + 2*y^2
= *#(x,y)
*#(s(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2
>= x*y + 2*x^2 + 2*y
= +#(*(x,y),y)
*(0(),y) = 2 + y
>= 1
= 0()
*(p(x),y) = 2 + 4*x + x*y + 2*x^2 + y
>= 2 + x*y + 2*x^2 + y
= +(*(x,y),minus(y))
*(s(x),y) = 2 + 4*x + x*y + 2*x^2 + y
>= 1 + x*y + 2*x^2 + y
= +(*(x,y),y)
+(0(),y) = 2 + y
>= y
= y
+(p(x),y) = 2 + x + y
>= 2 + x + y
= p(+(x,y))
+(s(x),y) = 2 + x + y
>= 2 + x + y
= s(+(x,y))
minus(0()) = 2
>= 1
= 0()
minus(p(x)) = 2 + x
>= 2 + x
= s(minus(x))
minus(s(x)) = 2 + x
>= 2 + x
= p(minus(x))
*** 1.1.1.1.2.1.1.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> *#(x,y)
*#(p(x),y) -> +#(*(x,y),minus(y))
*#(s(x),y) -> *#(x,y)
*#(s(x),y) -> +#(*(x,y),y)
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.2.1.1.2.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
*#(p(x),y) -> *#(x,y)
*#(p(x),y) -> +#(*(x,y),minus(y))
*#(s(x),y) -> *#(x,y)
*#(s(x),y) -> +#(*(x,y),y)
+#(p(x),y) -> c_5(+#(x,y))
+#(s(x),y) -> c_6(+#(x,y))
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:*#(p(x),y) -> *#(x,y)
-->_1 *#(s(x),y) -> +#(*(x,y),y):4
-->_1 *#(s(x),y) -> *#(x,y):3
-->_1 *#(p(x),y) -> +#(*(x,y),minus(y)):2
-->_1 *#(p(x),y) -> *#(x,y):1
2:W:*#(p(x),y) -> +#(*(x,y),minus(y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):6
-->_1 +#(p(x),y) -> c_5(+#(x,y)):5
3:W:*#(s(x),y) -> *#(x,y)
-->_1 *#(s(x),y) -> +#(*(x,y),y):4
-->_1 *#(s(x),y) -> *#(x,y):3
-->_1 *#(p(x),y) -> +#(*(x,y),minus(y)):2
-->_1 *#(p(x),y) -> *#(x,y):1
4:W:*#(s(x),y) -> +#(*(x,y),y)
-->_1 +#(s(x),y) -> c_6(+#(x,y)):6
-->_1 +#(p(x),y) -> c_5(+#(x,y)):5
5:W:+#(p(x),y) -> c_5(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):6
-->_1 +#(p(x),y) -> c_5(+#(x,y)):5
6:W:+#(s(x),y) -> c_6(+#(x,y))
-->_1 +#(s(x),y) -> c_6(+#(x,y)):6
-->_1 +#(p(x),y) -> c_5(+#(x,y)):5
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: *#(p(x),y) -> *#(x,y)
3: *#(s(x),y) -> *#(x,y)
2: *#(p(x),y) -> +#(*(x,y)
,minus(y))
4: *#(s(x),y) -> +#(*(x,y),y)
6: +#(s(x),y) -> c_6(+#(x,y))
5: +#(p(x),y) -> c_5(+#(x,y))
*** 1.1.1.1.2.1.1.2.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(0(),y) -> 0()
*(p(x),y) -> +(*(x,y),minus(y))
*(s(x),y) -> +(*(x,y),y)
+(0(),y) -> y
+(p(x),y) -> p(+(x,y))
+(s(x),y) -> s(+(x,y))
minus(0()) -> 0()
minus(p(x)) -> s(minus(x))
minus(s(x)) -> p(minus(x))
Signature:
{*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1}
Obligation:
Innermost
basic terms: {*#,+#,minus#}/{0,p,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).