*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Weak DP Rules: Weak TRS Rules: Signature: {*/2,+/2,minus/1} / {0/0,p/1,s/1} Obligation: Innermost basic terms: {*,+,minus}/{0,p,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs *#(0(),y) -> c_1() *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) +#(0(),y) -> c_4() +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) minus#(0()) -> c_7() minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: *#(0(),y) -> c_1() *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) +#(0(),y) -> c_4() +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) minus#(0()) -> c_7() minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,4,7} by application of Pre({1,4,7}) = {2,3,5,6,8,9}. Here rules are labelled as follows: 1: *#(0(),y) -> c_1() 2: *#(p(x),y) -> c_2(+#(*(x,y) ,minus(y)) ,*#(x,y) ,minus#(y)) 3: *#(s(x),y) -> c_3(+#(*(x,y),y) ,*#(x,y)) 4: +#(0(),y) -> c_4() 5: +#(p(x),y) -> c_5(+#(x,y)) 6: +#(s(x),y) -> c_6(+#(x,y)) 7: minus#(0()) -> c_7() 8: minus#(p(x)) -> c_8(minus#(x)) 9: minus#(s(x)) -> c_9(minus#(x)) *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Strict TRS Rules: Weak DP Rules: *#(0(),y) -> c_1() +#(0(),y) -> c_4() minus#(0()) -> c_7() Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) -->_3 minus#(s(x)) -> c_9(minus#(x)):6 -->_3 minus#(p(x)) -> c_8(minus#(x)):5 -->_1 +#(s(x),y) -> c_6(+#(x,y)):4 -->_1 +#(p(x),y) -> c_5(+#(x,y)):3 -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2 -->_3 minus#(0()) -> c_7():9 -->_1 +#(0(),y) -> c_4():8 -->_2 *#(0(),y) -> c_1():7 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):1 2:S:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):4 -->_1 +#(p(x),y) -> c_5(+#(x,y)):3 -->_1 +#(0(),y) -> c_4():8 -->_2 *#(0(),y) -> c_1():7 -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):1 3:S:+#(p(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):4 -->_1 +#(0(),y) -> c_4():8 -->_1 +#(p(x),y) -> c_5(+#(x,y)):3 4:S:+#(s(x),y) -> c_6(+#(x,y)) -->_1 +#(0(),y) -> c_4():8 -->_1 +#(s(x),y) -> c_6(+#(x,y)):4 -->_1 +#(p(x),y) -> c_5(+#(x,y)):3 5:S:minus#(p(x)) -> c_8(minus#(x)) -->_1 minus#(s(x)) -> c_9(minus#(x)):6 -->_1 minus#(0()) -> c_7():9 -->_1 minus#(p(x)) -> c_8(minus#(x)):5 6:S:minus#(s(x)) -> c_9(minus#(x)) -->_1 minus#(0()) -> c_7():9 -->_1 minus#(s(x)) -> c_9(minus#(x)):6 -->_1 minus#(p(x)) -> c_8(minus#(x)):5 7:W:*#(0(),y) -> c_1() 8:W:+#(0(),y) -> c_4() 9:W:minus#(0()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: *#(0(),y) -> c_1() 8: +#(0(),y) -> c_4() 9: minus#(0()) -> c_7() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: *#(p(x),y) -> c_2(+#(*(x,y) ,minus(y)) ,*#(x,y) ,minus#(y)) 2: *#(s(x),y) -> c_3(+#(*(x,y),y) ,*#(x,y)) 5: minus#(p(x)) -> c_8(minus#(x)) 6: minus#(s(x)) -> c_9(minus#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1,2,3}, uargs(c_3) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_8) = {1}, uargs(c_9) = {1} Following symbols are considered usable: {minus,*#,+#,minus#} TcT has computed the following interpretation: p(*) = 0 p(+) = x2^2 p(0) = 0 p(minus) = 2 + x1 p(p) = 1 + x1 p(s) = 1 + x1 p(*#) = 2 + 2*x1 + 2*x1*x2 + 2*x1^2 + 3*x2^2 p(+#) = x2 p(minus#) = x1 p(c_1) = 1 p(c_2) = x1 + x2 + x3 p(c_3) = x1 + x2 p(c_4) = 0 p(c_5) = x1 p(c_6) = x1 p(c_7) = 0 p(c_8) = x1 p(c_9) = x1 Following rules are strictly oriented: *#(p(x),y) = 6 + 6*x + 2*x*y + 2*x^2 + 2*y + 3*y^2 > 4 + 2*x + 2*x*y + 2*x^2 + 2*y + 3*y^2 = c_2(+#(*(x,y),minus(y)) ,*#(x,y) ,minus#(y)) *#(s(x),y) = 6 + 6*x + 2*x*y + 2*x^2 + 2*y + 3*y^2 > 2 + 2*x + 2*x*y + 2*x^2 + y + 3*y^2 = c_3(+#(*(x,y),y),*#(x,y)) minus#(p(x)) = 1 + x > x = c_8(minus#(x)) minus#(s(x)) = 1 + x > x = c_9(minus#(x)) Following rules are (at-least) weakly oriented: +#(p(x),y) = y >= y = c_5(+#(x,y)) +#(s(x),y) = y >= y = c_6(+#(x,y)) minus(0()) = 2 >= 0 = 0() minus(p(x)) = 3 + x >= 3 + x = s(minus(x)) minus(s(x)) = 3 + x >= 3 + x = p(minus(x)) *** 1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) minus#(p(x)) -> c_8(minus#(x)) minus#(s(x)) -> c_9(minus#(x)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:+#(p(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 2:S:+#(s(x),y) -> c_6(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 3:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) -->_3 minus#(s(x)) -> c_9(minus#(x)):6 -->_3 minus#(p(x)) -> c_8(minus#(x)):5 -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3 -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 4:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3 -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 5:W:minus#(p(x)) -> c_8(minus#(x)) -->_1 minus#(s(x)) -> c_9(minus#(x)):6 -->_1 minus#(p(x)) -> c_8(minus#(x)):5 6:W:minus#(s(x)) -> c_9(minus#(x)) -->_1 minus#(s(x)) -> c_9(minus#(x)):6 -->_1 minus#(p(x)) -> c_8(minus#(x)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: minus#(s(x)) -> c_9(minus#(x)) 5: minus#(p(x)) -> c_8(minus#(x)) *** 1.1.1.1.2.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/3,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:+#(p(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 2:S:+#(s(x),y) -> c_6(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 3:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)) -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3 -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 4:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):4 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y),minus#(y)):3 -->_1 +#(s(x),y) -> c_6(+#(x,y)):2 -->_1 +#(p(x),y) -> c_5(+#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *** 1.1.1.1.2.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) and a lower component +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Further, following extension rules are added to the lower component. *#(p(x),y) -> *#(x,y) *#(p(x),y) -> +#(*(x,y),minus(y)) *#(s(x),y) -> *#(x,y) *#(s(x),y) -> +#(*(x,y),y) *** 1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: *#(p(x),y) -> c_2(+#(*(x,y) ,minus(y)) ,*#(x,y)) 2: *#(s(x),y) -> c_3(+#(*(x,y),y) ,*#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1,2} Following symbols are considered usable: {*#,+#,minus#} TcT has computed the following interpretation: p(*) = [5] x1 + [1] p(+) = [4] x1 + [8] p(0) = [0] p(minus) = [1] x1 + [3] p(p) = [1] x1 + [3] p(s) = [1] x1 + [2] p(*#) = [8] x1 + [0] p(+#) = [0] p(minus#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [9] p(c_3) = [4] x1 + [1] x2 + [0] p(c_4) = [0] p(c_5) = [2] p(c_6) = [0] p(c_7) = [1] p(c_8) = [1] x1 + [4] p(c_9) = [1] Following rules are strictly oriented: *#(p(x),y) = [8] x + [24] > [8] x + [9] = c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) = [8] x + [16] > [8] x + [0] = c_3(+#(*(x,y),y),*#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:*#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)) -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)):1 2:W:*#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)) -->_2 *#(s(x),y) -> c_3(+#(*(x,y),y),*#(x,y)):2 -->_2 *#(p(x),y) -> c_2(+#(*(x,y),minus(y)),*#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: *#(p(x),y) -> c_2(+#(*(x,y) ,minus(y)) ,*#(x,y)) 2: *#(s(x),y) -> c_3(+#(*(x,y),y) ,*#(x,y)) *** 1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> *#(x,y) *#(p(x),y) -> +#(*(x,y),minus(y)) *#(s(x),y) -> *#(x,y) *#(s(x),y) -> +#(*(x,y),y) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: +#(p(x),y) -> c_5(+#(x,y)) 2: +#(s(x),y) -> c_6(+#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> *#(x,y) *#(p(x),y) -> +#(*(x,y),minus(y)) *#(s(x),y) -> *#(x,y) *#(s(x),y) -> +#(*(x,y),y) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {*,+,minus,*#,+#,minus#} TcT has computed the following interpretation: p(*) = x1*x2 + 2*x1^2 p(+) = 1 + x1 + x2 p(0) = 1 p(minus) = 1 + x1 p(p) = 1 + x1 p(s) = 1 + x1 p(*#) = 3 + 2*x1*x2 + 2*x1^2 + 2*x2^2 p(+#) = x1 + 2*x2 p(minus#) = x1 p(c_1) = 0 p(c_2) = 1 + x2 p(c_3) = x1 p(c_4) = 0 p(c_5) = x1 p(c_6) = x1 p(c_7) = 1 p(c_8) = 0 p(c_9) = 0 Following rules are strictly oriented: +#(p(x),y) = 1 + x + 2*y > x + 2*y = c_5(+#(x,y)) +#(s(x),y) = 1 + x + 2*y > x + 2*y = c_6(+#(x,y)) Following rules are (at-least) weakly oriented: *#(p(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2 >= 3 + 2*x*y + 2*x^2 + 2*y^2 = *#(x,y) *#(p(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2 >= 2 + x*y + 2*x^2 + 2*y = +#(*(x,y),minus(y)) *#(s(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2 >= 3 + 2*x*y + 2*x^2 + 2*y^2 = *#(x,y) *#(s(x),y) = 5 + 4*x + 2*x*y + 2*x^2 + 2*y + 2*y^2 >= x*y + 2*x^2 + 2*y = +#(*(x,y),y) *(0(),y) = 2 + y >= 1 = 0() *(p(x),y) = 2 + 4*x + x*y + 2*x^2 + y >= 2 + x*y + 2*x^2 + y = +(*(x,y),minus(y)) *(s(x),y) = 2 + 4*x + x*y + 2*x^2 + y >= 1 + x*y + 2*x^2 + y = +(*(x,y),y) +(0(),y) = 2 + y >= y = y +(p(x),y) = 2 + x + y >= 2 + x + y = p(+(x,y)) +(s(x),y) = 2 + x + y >= 2 + x + y = s(+(x,y)) minus(0()) = 2 >= 1 = 0() minus(p(x)) = 2 + x >= 2 + x = s(minus(x)) minus(s(x)) = 2 + x >= 2 + x = p(minus(x)) *** 1.1.1.1.2.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> *#(x,y) *#(p(x),y) -> +#(*(x,y),minus(y)) *#(s(x),y) -> *#(x,y) *#(s(x),y) -> +#(*(x,y),y) +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.2.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: *#(p(x),y) -> *#(x,y) *#(p(x),y) -> +#(*(x,y),minus(y)) *#(s(x),y) -> *#(x,y) *#(s(x),y) -> +#(*(x,y),y) +#(p(x),y) -> c_5(+#(x,y)) +#(s(x),y) -> c_6(+#(x,y)) Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:*#(p(x),y) -> *#(x,y) -->_1 *#(s(x),y) -> +#(*(x,y),y):4 -->_1 *#(s(x),y) -> *#(x,y):3 -->_1 *#(p(x),y) -> +#(*(x,y),minus(y)):2 -->_1 *#(p(x),y) -> *#(x,y):1 2:W:*#(p(x),y) -> +#(*(x,y),minus(y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):6 -->_1 +#(p(x),y) -> c_5(+#(x,y)):5 3:W:*#(s(x),y) -> *#(x,y) -->_1 *#(s(x),y) -> +#(*(x,y),y):4 -->_1 *#(s(x),y) -> *#(x,y):3 -->_1 *#(p(x),y) -> +#(*(x,y),minus(y)):2 -->_1 *#(p(x),y) -> *#(x,y):1 4:W:*#(s(x),y) -> +#(*(x,y),y) -->_1 +#(s(x),y) -> c_6(+#(x,y)):6 -->_1 +#(p(x),y) -> c_5(+#(x,y)):5 5:W:+#(p(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):6 -->_1 +#(p(x),y) -> c_5(+#(x,y)):5 6:W:+#(s(x),y) -> c_6(+#(x,y)) -->_1 +#(s(x),y) -> c_6(+#(x,y)):6 -->_1 +#(p(x),y) -> c_5(+#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: *#(p(x),y) -> *#(x,y) 3: *#(s(x),y) -> *#(x,y) 2: *#(p(x),y) -> +#(*(x,y) ,minus(y)) 4: *#(s(x),y) -> +#(*(x,y),y) 6: +#(s(x),y) -> c_6(+#(x,y)) 5: +#(p(x),y) -> c_5(+#(x,y)) *** 1.1.1.1.2.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: *(0(),y) -> 0() *(p(x),y) -> +(*(x,y),minus(y)) *(s(x),y) -> +(*(x,y),y) +(0(),y) -> y +(p(x),y) -> p(+(x,y)) +(s(x),y) -> s(+(x,y)) minus(0()) -> 0() minus(p(x)) -> s(minus(x)) minus(s(x)) -> p(minus(x)) Signature: {*/2,+/2,minus/1,*#/2,+#/2,minus#/1} / {0/0,p/1,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/1} Obligation: Innermost basic terms: {*#,+#,minus#}/{0,p,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).