(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+', -
(6) Obligation:
Innermost TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', -
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)
Induction Step:
+'(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(+'(gen_0':s2_0(n4_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
-
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s2_0(
n471_0),
gen_0':s2_0(
n471_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n471
0)
Induction Base:
-(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
-(gen_0':s2_0(+(n471_0, 1)), gen_0':s2_0(+(n471_0, 1))) →RΩ(1)
-(gen_0':s2_0(n471_0), gen_0':s2_0(n471_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
-(gen_0':s2_0(n471_0), gen_0':s2_0(n471_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n4710)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
-(gen_0':s2_0(n471_0), gen_0':s2_0(n471_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n4710)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)