We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { +(0(), y) -> y , +(s(x), y) -> +(x, s(y)) , +(s(x), y) -> s(+(x, y)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS)' as induced by the safe mapping safe(+) = {2}, safe(0) = {}, safe(s) = {1} and precedence empty . Following symbols are considered recursive: {+} The recursion depth is 1. For your convenience, here are the satisfied ordering constraints: +(0(); y) > y +(s(; x); y) > +(x; s(; y)) +(s(; x); y) > s(; +(x; y)) Hurray, we answered YES(?,O(n^1))