*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Weak DP Rules: Weak TRS Rules: Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} Obligation: Innermost basic terms: {f}/{0,1,2,g,i} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) f#(i(x),y) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) f#(i(x),y) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,3,4,7} by application of Pre({1,2,3,4,7}) = {5,6}. Here rules are labelled as follows: 1: f#(x,0()) -> c_1() 2: f#(0(),y) -> c_2() 3: f#(1(),g(x,y)) -> c_3() 4: f#(2(),g(x,y)) -> c_4() 5: f#(f(x,y),z) -> c_5(f#(x,f(y,z)) ,f#(y,z)) 6: f#(g(x,y),z) -> c_6(f#(x,z) ,f#(y,z)) 7: f#(i(x),y) -> c_7() *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Strict TRS Rules: Weak DP Rules: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(i(x),y) -> c_7() Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(i(x),y) -> c_7():7 -->_1 f#(i(x),y) -> c_7():7 -->_2 f#(2(),g(x,y)) -> c_4():6 -->_1 f#(2(),g(x,y)) -> c_4():6 -->_2 f#(1(),g(x,y)) -> c_3():5 -->_1 f#(1(),g(x,y)) -> c_3():5 -->_2 f#(0(),y) -> c_2():4 -->_1 f#(0(),y) -> c_2():4 -->_2 f#(x,0()) -> c_1():3 -->_1 f#(x,0()) -> c_1():3 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 2:S:f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) -->_2 f#(i(x),y) -> c_7():7 -->_1 f#(i(x),y) -> c_7():7 -->_2 f#(2(),g(x,y)) -> c_4():6 -->_1 f#(2(),g(x,y)) -> c_4():6 -->_2 f#(1(),g(x,y)) -> c_3():5 -->_1 f#(1(),g(x,y)) -> c_3():5 -->_2 f#(0(),y) -> c_2():4 -->_1 f#(0(),y) -> c_2():4 -->_2 f#(x,0()) -> c_1():3 -->_1 f#(x,0()) -> c_1():3 -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 3:W:f#(x,0()) -> c_1() 4:W:f#(0(),y) -> c_2() 5:W:f#(1(),g(x,y)) -> c_3() 6:W:f#(2(),g(x,y)) -> c_4() 7:W:f#(i(x),y) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(x,0()) -> c_1() 4: f#(0(),y) -> c_2() 5: f#(1(),g(x,y)) -> c_3() 6: f#(2(),g(x,y)) -> c_4() 7: f#(i(x),y) -> c_7() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: f#(g(x,y),z) -> c_6(f#(x,z) ,f#(y,z)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1,2}, uargs(c_6) = {1,2} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(2) = [2] p(f) = [4] x1 + [2] x2 + [2] p(g) = [1] x1 + [1] x2 + [2] p(i) = [0] p(f#) = [2] x1 + [0] p(c_1) = [4] p(c_2) = [1] p(c_3) = [0] p(c_4) = [0] p(c_5) = [4] x1 + [2] x2 + [4] p(c_6) = [1] x1 + [1] x2 + [0] p(c_7) = [1] Following rules are strictly oriented: f#(g(x,y),z) = [2] x + [2] y + [4] > [2] x + [2] y + [0] = c_6(f#(x,z),f#(y,z)) Following rules are (at-least) weakly oriented: f#(f(x,y),z) = [8] x + [4] y + [4] >= [8] x + [4] y + [4] = c_5(f#(x,f(y,z)),f#(y,z)) *** 1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) Strict TRS Rules: Weak DP Rules: f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: Assumption Proof: () *** 1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) Strict TRS Rules: Weak DP Rules: f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(f(x,y),z) -> c_5(f#(x,f(y,z)) ,f#(y,z)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) Strict TRS Rules: Weak DP Rules: f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1,2}, uargs(c_6) = {1,2} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(0) = [2] p(1) = [2] p(2) = [2] p(f) = [4] x1 + [2] x2 + [4] p(g) = [1] x1 + [1] x2 + [4] p(i) = [3] p(f#) = [4] x1 + [0] p(c_1) = [1] p(c_2) = [2] p(c_3) = [1] p(c_4) = [4] p(c_5) = [4] x1 + [2] x2 + [12] p(c_6) = [1] x1 + [1] x2 + [0] p(c_7) = [0] Following rules are strictly oriented: f#(f(x,y),z) = [16] x + [8] y + [16] > [16] x + [8] y + [12] = c_5(f#(x,f(y,z)),f#(y,z)) Following rules are (at-least) weakly oriented: f#(g(x,y),z) = [4] x + [4] y + [16] >= [4] x + [4] y + [0] = c_6(f#(x,z),f#(y,z)) *** 1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: Assumption Proof: () *** 1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 2:W:f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(f(x,y),z) -> c_5(f#(x,f(y,z)) ,f#(y,z)) 2: f#(g(x,y),z) -> c_6(f#(x,z) ,f#(y,z)) *** 1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} Obligation: Innermost basic terms: {f#}/{0,1,2,g,i} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).