*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: dx(X) -> one() dx(a()) -> zero() dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) Weak DP Rules: Weak TRS Rules: Signature: {dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0} Obligation: Innermost basic terms: {dx}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs dx#(X) -> c_1() dx#(a()) -> c_2() dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(X) -> c_1() dx#(a()) -> c_2() dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: dx(X) -> one() dx(a()) -> zero() dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: dx#(X) -> c_1() dx#(a()) -> c_2() dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(X) -> c_1() dx#(a()) -> c_2() dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Succeeding Proof: () *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(X) -> c_1() dx#(a()) -> c_2() dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3,4,5,6,7,8,9}. Here rules are labelled as follows: 1: dx#(X) -> c_1() 2: dx#(a()) -> c_2() 3: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) 4: dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) 5: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) 6: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) 7: dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) 8: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) 9: dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(X) -> c_1() dx#(a()) -> c_2() Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(a()) -> c_2():9 -->_1 dx#(a()) -> c_2():9 -->_2 dx#(X) -> c_1():8 -->_1 dx#(X) -> c_1():8 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 2:S:dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(a()) -> c_2():9 -->_1 dx#(a()) -> c_2():9 -->_2 dx#(X) -> c_1():8 -->_1 dx#(X) -> c_1():8 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 3:S:dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(a()) -> c_2():9 -->_1 dx#(X) -> c_1():8 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 4:S:dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(a()) -> c_2():9 -->_1 dx#(a()) -> c_2():9 -->_2 dx#(X) -> c_1():8 -->_1 dx#(X) -> c_1():8 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 5:S:dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(a()) -> c_2():9 -->_1 dx#(X) -> c_1():8 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 6:S:dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(a()) -> c_2():9 -->_1 dx#(a()) -> c_2():9 -->_2 dx#(X) -> c_1():8 -->_1 dx#(X) -> c_1():8 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 7:S:dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) -->_2 dx#(a()) -> c_2():9 -->_1 dx#(a()) -> c_2():9 -->_2 dx#(X) -> c_1():8 -->_1 dx#(X) -> c_1():8 -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 8:W:dx#(X) -> c_1() 9:W:dx#(a()) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: dx#(X) -> c_1() 9: dx#(a()) -> c_2() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 4: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {1}, uargs(c_8) = {1,2}, uargs(c_9) = {1,2} Following symbols are considered usable: {dx#} TcT has computed the following interpretation: p(a) = [0] p(div) = [1] x1 + [1] x2 + [0] p(dx) = [1] x1 + [1] p(exp) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [0] p(minus) = [1] x1 + [1] x2 + [2] p(neg) = [1] x1 + [0] p(one) = [0] p(plus) = [1] x1 + [1] x2 + [0] p(times) = [1] x1 + [1] x2 + [0] p(two) = [0] p(zero) = [1] p(dx#) = [8] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] x1 + [1] x2 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] x2 + [12] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16] > [8] ALPHA + [8] BETA + [12] = c_6(dx#(ALPHA),dx#(BETA)) Following rules are (at-least) weakly oriented: dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_5(dx#(ALPHA)) dx#(neg(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) 2: dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) 6: dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {1}, uargs(c_8) = {1,2}, uargs(c_9) = {1,2} Following symbols are considered usable: {dx#} TcT has computed the following interpretation: p(a) = [1] p(div) = [1] x1 + [1] x2 + [3] p(dx) = [1] x1 + [1] p(exp) = [1] x1 + [1] x2 + [1] p(ln) = [1] x1 + [0] p(minus) = [1] x1 + [1] x2 + [0] p(neg) = [1] x1 + [0] p(one) = [8] p(plus) = [1] x1 + [1] x2 + [0] p(times) = [1] x1 + [1] x2 + [2] p(two) = [1] p(zero) = [1] p(dx#) = [8] x1 + [0] p(c_1) = [2] p(c_2) = [0] p(c_3) = [1] x1 + [1] x2 + [12] p(c_4) = [1] x1 + [1] x2 + [4] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] x2 + [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] x1 + [1] x2 + [12] Following rules are strictly oriented: dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [24] > [8] ALPHA + [8] BETA + [12] = c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8] > [8] ALPHA + [8] BETA + [4] = c_4(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16] > [8] ALPHA + [8] BETA + [12] = c_9(dx#(ALPHA),dx#(BETA)) Following rules are (at-least) weakly oriented: dx#(ln(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_8(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {1}, uargs(c_8) = {1,2}, uargs(c_9) = {1,2} Following symbols are considered usable: {dx#} TcT has computed the following interpretation: p(a) = [1] p(div) = [1] x1 + [1] x2 + [0] p(dx) = [1] p(exp) = [1] x1 + [1] x2 + [2] p(ln) = [1] x1 + [0] p(minus) = [1] x1 + [1] x2 + [0] p(neg) = [1] x1 + [4] p(one) = [0] p(plus) = [1] x1 + [1] x2 + [0] p(times) = [1] x1 + [1] x2 + [0] p(two) = [4] p(zero) = [1] p(dx#) = [4] x1 + [0] p(c_1) = [0] p(c_2) = [1] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] x1 + [1] x2 + [2] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] x2 + [0] p(c_7) = [1] x1 + [1] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: dx#(neg(ALPHA)) = [4] ALPHA + [16] > [4] ALPHA + [1] = c_7(dx#(ALPHA)) Following rules are (at-least) weakly oriented: dx#(div(ALPHA,BETA)) = [4] ALPHA + [4] BETA + [0] >= [4] ALPHA + [4] BETA + [0] = c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) = [4] ALPHA + [4] BETA + [8] >= [4] ALPHA + [4] BETA + [2] = c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) = [4] ALPHA + [0] >= [4] ALPHA + [0] = c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) = [4] ALPHA + [4] BETA + [0] >= [4] ALPHA + [4] BETA + [0] = c_6(dx#(ALPHA),dx#(BETA)) dx#(plus(ALPHA,BETA)) = [4] ALPHA + [4] BETA + [0] >= [4] ALPHA + [4] BETA + [0] = c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) = [4] ALPHA + [4] BETA + [0] >= [4] ALPHA + [4] BETA + [0] = c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {1}, uargs(c_8) = {1,2}, uargs(c_9) = {1,2} Following symbols are considered usable: {dx#} TcT has computed the following interpretation: p(a) = [1] p(div) = [1] x1 + [1] x2 + [0] p(dx) = [1] x1 + [8] p(exp) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [1] p(minus) = [1] x1 + [1] x2 + [1] p(neg) = [1] x1 + [0] p(one) = [1] p(plus) = [1] x1 + [1] x2 + [0] p(times) = [1] x1 + [1] x2 + [0] p(two) = [0] p(zero) = [2] p(dx#) = [8] x1 + [0] p(c_1) = [8] p(c_2) = [0] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] x1 + [1] x2 + [0] p(c_5) = [1] x1 + [6] p(c_6) = [1] x1 + [1] x2 + [5] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: dx#(ln(ALPHA)) = [8] ALPHA + [8] > [8] ALPHA + [6] = c_5(dx#(ALPHA)) Following rules are (at-least) weakly oriented: dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_4(dx#(ALPHA),dx#(BETA)) dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8] >= [8] ALPHA + [8] BETA + [5] = c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {1}, uargs(c_8) = {1,2}, uargs(c_9) = {1,2} Following symbols are considered usable: {dx#} TcT has computed the following interpretation: p(a) = [2] p(div) = [1] x1 + [1] x2 + [0] p(dx) = [4] x1 + [1] p(exp) = [1] x1 + [1] x2 + [1] p(ln) = [1] x1 + [2] p(minus) = [1] x1 + [1] x2 + [2] p(neg) = [1] x1 + [0] p(one) = [0] p(plus) = [1] x1 + [1] x2 + [1] p(times) = [1] x1 + [1] x2 + [0] p(two) = [8] p(zero) = [0] p(dx#) = [8] x1 + [0] p(c_1) = [8] p(c_2) = [1] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] x1 + [1] x2 + [8] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] x2 + [4] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [6] p(c_9) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8] > [8] ALPHA + [8] BETA + [6] = c_8(dx#(ALPHA),dx#(BETA)) Following rules are (at-least) weakly oriented: dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8] >= [8] ALPHA + [8] BETA + [8] = c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) = [8] ALPHA + [16] >= [8] ALPHA + [0] = c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16] >= [8] ALPHA + [8] BETA + [4] = c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) = [8] ALPHA + [0] >= [8] ALPHA + [0] = c_7(dx#(ALPHA)) dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0] >= [8] ALPHA + [8] BETA + [0] = c_9(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 2:W:dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 3:W:dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 4:W:dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 5:W:dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 6:W:dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 7:W:dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) -->_2 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_1 dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)):7 -->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6 -->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5 -->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4 -->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)):3 -->_2 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_1 dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)):2 -->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 -->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),dx#(BETA)) 7: dx#(times(ALPHA,BETA)) -> c_9(dx#(ALPHA),dx#(BETA)) 6: dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)) 5: dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)) 4: dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)) 3: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)) 2: dx#(exp(ALPHA,BETA)) -> c_4(dx#(ALPHA),dx#(BETA)) *** 1.1.1.1.1.1.2.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/1,c_6/2,c_7/1,c_8/2,c_9/2} Obligation: Innermost basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).