*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
b(X) -> a(X)
f(a(g(X))) -> b(X)
f(f(X)) -> f(a(b(f(X))))
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,f/1} / {a/1,g/1}
Obligation:
Innermost
basic terms: {b,f}/{a,g}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
b#(X) -> c_1()
f#(a(g(X))) -> c_2(b#(X))
f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
b#(X) -> c_1()
f#(a(g(X))) -> c_2(b#(X))
f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
b(X) -> a(X)
f(a(g(X))) -> b(X)
f(f(X)) -> f(a(b(f(X))))
Signature:
{b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3}
Obligation:
Innermost
basic terms: {b#,f#}/{a,g}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
b#(X) -> c_1()
f#(a(g(X))) -> c_2(b#(X))
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
b#(X) -> c_1()
f#(a(g(X))) -> c_2(b#(X))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3}
Obligation:
Innermost
basic terms: {b#,f#}/{a,g}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:b#(X) -> c_1()
2:S:f#(a(g(X))) -> c_2(b#(X))
-->_1 b#(X) -> c_1():1
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3}
Obligation:
Innermost
basic terms: {b#,f#}/{a,g}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).