*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) Weak DP Rules: Weak TRS Rules: Signature: {b/1,f/1} / {a/1,g/1} Obligation: Innermost basic terms: {b,f}/{a,g} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} Obligation: Innermost basic terms: {b#,f#}/{a,g} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} Obligation: Innermost basic terms: {b#,f#}/{a,g} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:b#(X) -> c_1() 2:S:f#(a(g(X))) -> c_2(b#(X)) -->_1 b#(X) -> c_1():1 The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} Obligation: Innermost basic terms: {b#,f#}/{a,g} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).