*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(X,X) -> c(X) f(X,c(X)) -> f(s(X),X) f(s(X),X) -> f(X,a(X)) Weak DP Rules: Weak TRS Rules: Signature: {f/2} / {a/1,c/1,s/1} Obligation: Innermost basic terms: {f}/{a,c,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(X,X) -> c(X) f(X,c(X)) -> f(s(X),X) f(s(X),X) -> f(X,a(X)) Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} Obligation: Innermost basic terms: {f#}/{a,c,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(X,X) -> c_1() f#(X,c(X)) -> c_2(f#(s(X),X)) f#(s(X),X) -> c_3(f#(X,a(X))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} Obligation: Innermost basic terms: {f#}/{a,c,s} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:f#(X,X) -> c_1() 2:S:f#(X,c(X)) -> c_2(f#(s(X),X)) -->_1 f#(s(X),X) -> c_3(f#(X,a(X))):3 3:S:f#(s(X),X) -> c_3(f#(X,a(X))) The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1} Obligation: Innermost basic terms: {f#}/{a,c,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).