*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(X,X) -> c(X)
f(X,c(X)) -> f(s(X),X)
f(s(X),X) -> f(X,a(X))
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2} / {a/1,c/1,s/1}
Obligation:
Innermost
basic terms: {f}/{a,c,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
f#(X,X) -> c_1()
f#(X,c(X)) -> c_2(f#(s(X),X))
f#(s(X),X) -> c_3(f#(X,a(X)))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(X,X) -> c_1()
f#(X,c(X)) -> c_2(f#(s(X),X))
f#(s(X),X) -> c_3(f#(X,a(X)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(X,X) -> c(X)
f(X,c(X)) -> f(s(X),X)
f(s(X),X) -> f(X,a(X))
Signature:
{f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1}
Obligation:
Innermost
basic terms: {f#}/{a,c,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
f#(X,X) -> c_1()
f#(X,c(X)) -> c_2(f#(s(X),X))
f#(s(X),X) -> c_3(f#(X,a(X)))
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(X,X) -> c_1()
f#(X,c(X)) -> c_2(f#(s(X),X))
f#(s(X),X) -> c_3(f#(X,a(X)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1}
Obligation:
Innermost
basic terms: {f#}/{a,c,s}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:f#(X,X) -> c_1()
2:S:f#(X,c(X)) -> c_2(f#(s(X),X))
-->_1 f#(s(X),X) -> c_3(f#(X,a(X))):3
3:S:f#(s(X),X) -> c_3(f#(X,a(X)))
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,f#/2} / {a/1,c/1,s/1,c_1/0,c_2/1,c_3/1}
Obligation:
Innermost
basic terms: {f#}/{a,c,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).