*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        gcd(0(),Y) -> 0()
        gcd(s(X),0()) -> s(X)
        gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y))
        if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X))
        if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y))
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {gcd,if,le,minus,pred}/{0,false,s,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        gcd#(0(),Y) -> c_1()
        gcd#(s(X),0()) -> c_2()
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(0(),Y) -> c_6()
        le#(s(X),0()) -> c_7()
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,0()) -> c_9()
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
        pred#(s(X)) -> c_11()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(0(),Y) -> c_1()
        gcd#(s(X),0()) -> c_2()
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(0(),Y) -> c_6()
        le#(s(X),0()) -> c_7()
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,0()) -> c_9()
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
        pred#(s(X)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        gcd(0(),Y) -> 0()
        gcd(s(X),0()) -> s(X)
        gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y))
        if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X))
        if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y))
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
        gcd#(0(),Y) -> c_1()
        gcd#(s(X),0()) -> c_2()
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(0(),Y) -> c_6()
        le#(s(X),0()) -> c_7()
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,0()) -> c_9()
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
        pred#(s(X)) -> c_11()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(0(),Y) -> c_1()
        gcd#(s(X),0()) -> c_2()
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(0(),Y) -> c_6()
        le#(s(X),0()) -> c_7()
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,0()) -> c_9()
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
        pred#(s(X)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,6,7,9,11}
      by application of
        Pre({1,2,6,7,9,11}) = {3,4,5,8,10}.
      Here rules are labelled as follows:
        1:  gcd#(0(),Y) -> c_1()            
        2:  gcd#(s(X),0()) -> c_2()         
        3:  gcd#(s(X),s(Y)) -> c_3(if#(le(Y 
                                         ,X)
                                      ,s(X) 
                                      ,s(Y))
                                  ,le#(Y,X))
        4:  if#(false(),s(X),s(Y)) ->       
              c_4(gcd#(minus(Y,X),s(X))     
                 ,minus#(Y,X))              
        5:  if#(true(),s(X),s(Y)) ->        
              c_5(gcd#(minus(X,Y),s(Y))     
                 ,minus#(X,Y))              
        6:  le#(0(),Y) -> c_6()             
        7:  le#(s(X),0()) -> c_7()          
        8:  le#(s(X),s(Y)) -> c_8(le#(X,Y)) 
        9:  minus#(X,0()) -> c_9()          
        10: minus#(X,s(Y)) ->               
              c_10(pred#(minus(X,Y))        
                  ,minus#(X,Y))             
        11: pred#(s(X)) -> c_11()           
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        gcd#(0(),Y) -> c_1()
        gcd#(s(X),0()) -> c_2()
        le#(0(),Y) -> c_6()
        le#(s(X),0()) -> c_7()
        minus#(X,0()) -> c_9()
        pred#(s(X)) -> c_11()
      Weak TRS Rules:
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
           -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
           -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3
           -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2
           -->_2 le#(s(X),0()) -> c_7():9
           -->_2 le#(0(),Y) -> c_6():8
        
        2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
           -->_2 minus#(X,0()) -> c_9():10
           -->_1 gcd#(0(),Y) -> c_1():6
           -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
        
        3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
           -->_2 minus#(X,0()) -> c_9():10
           -->_1 gcd#(0(),Y) -> c_1():6
           -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
        
        4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y))
           -->_1 le#(s(X),0()) -> c_7():9
           -->_1 le#(0(),Y) -> c_6():8
           -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
        
        5:S:minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
           -->_1 pred#(s(X)) -> c_11():11
           -->_2 minus#(X,0()) -> c_9():10
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
        
        6:W:gcd#(0(),Y) -> c_1()
           
        
        7:W:gcd#(s(X),0()) -> c_2()
           
        
        8:W:le#(0(),Y) -> c_6()
           
        
        9:W:le#(s(X),0()) -> c_7()
           
        
        10:W:minus#(X,0()) -> c_9()
           
        
        11:W:pred#(s(X)) -> c_11()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        7:  gcd#(s(X),0()) -> c_2()
        6:  gcd#(0(),Y) -> c_1()   
        10: minus#(X,0()) -> c_9() 
        11: pred#(s(X)) -> c_11()  
        8:  le#(0(),Y) -> c_6()    
        9:  le#(s(X),0()) -> c_7() 
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
           -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
           -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3
           -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2
        
        2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
           -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
        
        3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
           -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
        
        4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y))
           -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
        
        5:S:minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y))
           -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        minus#(X,s(Y)) -> c_10(minus#(X,Y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
        if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
        if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
        le#(s(X),s(Y)) -> c_8(le#(X,Y))
        minus#(X,s(Y)) -> c_10(minus#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),Y) -> true()
        le(s(X),0()) -> false()
        le(s(X),s(Y)) -> le(X,Y)
        minus(X,0()) -> X
        minus(X,s(Y)) -> pred(minus(X,Y))
        pred(s(X)) -> X
      Signature:
        {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        5: minus#(X,s(Y)) -> c_10(minus#(X  
                                        ,Y))
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
          le#(s(X),s(Y)) -> c_8(le#(X,Y))
          minus#(X,s(Y)) -> c_10(minus#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          minus(X,0()) -> X
          minus(X,s(Y)) -> pred(minus(X,Y))
          pred(s(X)) -> X
        Signature:
          {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_8) = {1},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {minus,pred,gcd#,if#,le#,minus#,pred#}
        TcT has computed the following interpretation:
               p(0) = 0                  
           p(false) = 0                  
             p(gcd) = 2*x1^2 + 2*x2^2    
              p(if) = 2*x1^2             
              p(le) = x1*x2 + 2*x2 + x2^2
           p(minus) = x1                 
            p(pred) = x1                 
               p(s) = 1 + x1             
            p(true) = 0                  
            p(gcd#) = 3 + 2*x1*x2        
             p(if#) = 1 + 2*x2*x3        
             p(le#) = 2                  
          p(minus#) = x2                 
           p(pred#) = 2                  
             p(c_1) = 1                  
             p(c_2) = 0                  
             p(c_3) = x1 + x2            
             p(c_4) = x1 + x2            
             p(c_5) = x1 + x2            
             p(c_6) = 1                  
             p(c_7) = 0                  
             p(c_8) = x1                 
             p(c_9) = 0                  
            p(c_10) = x1                 
            p(c_11) = 1                  
        
        Following rules are strictly oriented:
        minus#(X,s(Y)) = 1 + Y            
                       > Y                
                       = c_10(minus#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
               gcd#(s(X),s(Y)) =  5 + 2*X + 2*X*Y + 2*Y     
                               >= 5 + 2*X + 2*X*Y + 2*Y     
                               =  c_3(if#(le(Y,X),s(X),s(Y))
                                     ,le#(Y,X))             
        
        if#(false(),s(X),s(Y)) =  3 + 2*X + 2*X*Y + 2*Y     
                               >= 3 + X + 2*X*Y + 2*Y       
                               =  c_4(gcd#(minus(Y,X),s(X)) 
                                     ,minus#(Y,X))          
        
         if#(true(),s(X),s(Y)) =  3 + 2*X + 2*X*Y + 2*Y     
                               >= 3 + 2*X + 2*X*Y + Y       
                               =  c_5(gcd#(minus(X,Y),s(Y)) 
                                     ,minus#(X,Y))          
        
                le#(s(X),s(Y)) =  2                         
                               >= 2                         
                               =  c_8(le#(X,Y))             
        
                  minus(X,0()) =  X                         
                               >= X                         
                               =  X                         
        
                 minus(X,s(Y)) =  X                         
                               >= X                         
                               =  pred(minus(X,Y))          
        
                    pred(s(X)) =  1 + X                     
                               >= X                         
                               =  X                         
        
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
          le#(s(X),s(Y)) -> c_8(le#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(X,s(Y)) -> c_10(minus#(X,Y))
        Weak TRS Rules:
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          minus(X,0()) -> X
          minus(X,s(Y)) -> pred(minus(X,Y))
          pred(s(X)) -> X
        Signature:
          {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
          le#(s(X),s(Y)) -> c_8(le#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(X,s(Y)) -> c_10(minus#(X,Y))
        Weak TRS Rules:
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          minus(X,0()) -> X
          minus(X,s(Y)) -> pred(minus(X,Y))
          pred(s(X)) -> X
        Signature:
          {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
             -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
             -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3
             -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2
          
          2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
             -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):5
             -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
          
          3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
             -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):5
             -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
          
          4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
          
          5:W:minus#(X,s(Y)) -> c_10(minus#(X,Y))
             -->_1 minus#(X,s(Y)) -> c_10(minus#(X,Y)):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: minus#(X,s(Y)) -> c_10(minus#(X  
                                          ,Y))
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
          le#(s(X),s(Y)) -> c_8(le#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          minus(X,0()) -> X
          minus(X,s(Y)) -> pred(minus(X,Y))
          pred(s(X)) -> X
        Signature:
          {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
             -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
             -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3
             -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2
          
          2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X))
             -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
          
          3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y))
             -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
          
          4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
          if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
          le#(s(X),s(Y)) -> c_8(le#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          minus(X,0()) -> X
          minus(X,s(Y)) -> pred(minus(X,Y))
          pred(s(X)) -> X
        Signature:
          {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          2: if#(false(),s(X),s(Y)) ->      
               c_4(gcd#(minus(Y,X),s(X)))   
          3: if#(true(),s(X),s(Y)) ->       
               c_5(gcd#(minus(X,Y),s(Y)))   
          4: le#(s(X),s(Y)) -> c_8(le#(X,Y))
          
        Consider the set of all dependency pairs
          1: gcd#(s(X),s(Y)) -> c_3(if#(le(Y 
                                          ,X)
                                       ,s(X) 
                                       ,s(Y))
                                   ,le#(Y,X))
          2: if#(false(),s(X),s(Y)) ->       
               c_4(gcd#(minus(Y,X),s(X)))    
          3: if#(true(),s(X),s(Y)) ->        
               c_5(gcd#(minus(X,Y),s(Y)))    
          4: le#(s(X),s(Y)) -> c_8(le#(X,Y)) 
        Processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2,3,4}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
            if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
            if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
            le#(s(X),s(Y)) -> c_8(le#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            minus(X,0()) -> X
            minus(X,s(Y)) -> pred(minus(X,Y))
            pred(s(X)) -> X
          Signature:
            {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_3) = {1,2},
            uargs(c_4) = {1},
            uargs(c_5) = {1},
            uargs(c_8) = {1}
          
          Following symbols are considered usable:
            {minus,pred,gcd#,if#,le#,minus#,pred#}
          TcT has computed the following interpretation:
                 p(0) = [0]                          
                        [0]                          
                        [0]                          
             p(false) = [0]                          
                        [0]                          
                        [0]                          
               p(gcd) = [0]                          
                        [0]                          
                        [0]                          
                p(if) = [0]                          
                        [0]                          
                        [0]                          
                p(le) = [0 0 0]      [0]             
                        [0 0 0] x2 + [0]             
                        [0 0 1]      [0]             
             p(minus) = [1 0 0]      [0]             
                        [1 1 0] x1 + [0]             
                        [0 1 1]      [0]             
              p(pred) = [1 0 0]      [0]             
                        [1 0 0] x1 + [0]             
                        [0 0 1]      [0]             
                 p(s) = [1 1 1]      [0]             
                        [0 0 0] x1 + [1]             
                        [0 0 1]      [1]             
              p(true) = [0]                          
                        [0]                          
                        [0]                          
              p(gcd#) = [1 0 1]      [1 0 0]      [0]
                        [0 0 0] x1 + [0 1 1] x2 + [0]
                        [0 0 0]      [0 1 0]      [1]
               p(if#) = [1 0 0]      [1 1 0]      [0]
                        [0 0 0] x2 + [0 1 0] x3 + [1]
                        [1 0 0]      [1 0 0]      [0]
               p(le#) = [0 0 0]      [0 0 1]      [0]
                        [0 0 1] x1 + [0 1 0] x2 + [0]
                        [0 0 0]      [0 0 0]      [1]
            p(minus#) = [0]                          
                        [0]                          
                        [0]                          
             p(pred#) = [0]                          
                        [0]                          
                        [0]                          
               p(c_1) = [0]                          
                        [0]                          
                        [0]                          
               p(c_2) = [0]                          
                        [0]                          
                        [0]                          
               p(c_3) = [1 0 0]      [1 0 0]      [0]
                        [0 0 0] x1 + [0 0 1] x2 + [1]
                        [0 0 0]      [0 0 0]      [0]
               p(c_4) = [1 0 0]      [0]             
                        [0 0 1] x1 + [0]             
                        [1 0 0]      [0]             
               p(c_5) = [1 0 0]      [0]             
                        [0 0 0] x1 + [0]             
                        [0 0 0]      [0]             
               p(c_6) = [0]                          
                        [0]                          
                        [0]                          
               p(c_7) = [0]                          
                        [0]                          
                        [0]                          
               p(c_8) = [1 0 0]      [0]             
                        [0 0 0] x1 + [1]             
                        [0 0 0]      [0]             
               p(c_9) = [0]                          
                        [0]                          
                        [0]                          
              p(c_10) = [0]                          
                        [0]                          
                        [0]                          
              p(c_11) = [0]                          
                        [0]                          
                        [0]                          
          
          Following rules are strictly oriented:
          if#(false(),s(X),s(Y)) = [1 1 1]     [1 1 1]     [1]
                                   [0 0 0] X + [0 0 0] Y + [2]
                                   [1 1 1]     [1 1 1]     [0]
                                 > [1 1 1]     [1 1 1]     [0]
                                   [0 0 0] X + [0 0 0] Y + [2]
                                   [1 1 1]     [1 1 1]     [0]
                                 = c_4(gcd#(minus(Y,X),s(X))) 
          
           if#(true(),s(X),s(Y)) = [1 1 1]     [1 1 1]     [1]
                                   [0 0 0] X + [0 0 0] Y + [2]
                                   [1 1 1]     [1 1 1]     [0]
                                 > [1 1 1]     [1 1 1]     [0]
                                   [0 0 0] X + [0 0 0] Y + [0]
                                   [0 0 0]     [0 0 0]     [0]
                                 = c_5(gcd#(minus(X,Y),s(Y))) 
          
                  le#(s(X),s(Y)) = [0 0 0]     [0 0 1]     [1]
                                   [0 0 1] X + [0 0 0] Y + [2]
                                   [0 0 0]     [0 0 0]     [1]
                                 > [0 0 1]     [0]            
                                   [0 0 0] Y + [1]            
                                   [0 0 0]     [0]            
                                 = c_8(le#(X,Y))              
          
          
          Following rules are (at-least) weakly oriented:
          gcd#(s(X),s(Y)) =  [1 1 2]     [1 1 1]     [1]
                             [0 0 0] X + [0 0 1] Y + [2]
                             [0 0 0]     [0 0 0]     [2]
                          >= [1 1 2]     [1 1 1]     [1]
                             [0 0 0] X + [0 0 0] Y + [2]
                             [0 0 0]     [0 0 0]     [0]
                          =  c_3(if#(le(Y,X),s(X),s(Y)) 
                                ,le#(Y,X))              
          
             minus(X,0()) =  [1 0 0]     [0]            
                             [1 1 0] X + [0]            
                             [0 1 1]     [0]            
                          >= [1 0 0]     [0]            
                             [0 1 0] X + [0]            
                             [0 0 1]     [0]            
                          =  X                          
          
            minus(X,s(Y)) =  [1 0 0]     [0]            
                             [1 1 0] X + [0]            
                             [0 1 1]     [0]            
                          >= [1 0 0]     [0]            
                             [1 0 0] X + [0]            
                             [0 1 1]     [0]            
                          =  pred(minus(X,Y))           
          
               pred(s(X)) =  [1 1 1]     [0]            
                             [1 1 1] X + [0]            
                             [0 0 1]     [1]            
                          >= [1 0 0]     [0]            
                             [0 1 0] X + [0]            
                             [0 0 1]     [0]            
                          =  X                          
          
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
          Strict TRS Rules:
            
          Weak DP Rules:
            if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
            if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
            le#(s(X),s(Y)) -> c_8(le#(X,Y))
          Weak TRS Rules:
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            minus(X,0()) -> X
            minus(X,s(Y)) -> pred(minus(X,Y))
            pred(s(X)) -> X
          Signature:
            {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
            if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
            if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
            le#(s(X),s(Y)) -> c_8(le#(X,Y))
          Weak TRS Rules:
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            minus(X,0()) -> X
            minus(X,s(Y)) -> pred(minus(X,Y))
            pred(s(X)) -> X
          Signature:
            {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X))
               -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
               -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y))):3
               -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X))):2
            
            2:W:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)))
               -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
            
            3:W:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)))
               -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1
            
            4:W:le#(s(X),s(Y)) -> c_8(le#(X,Y))
               -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: gcd#(s(X),s(Y)) -> c_3(if#(le(Y 
                                            ,X)
                                         ,s(X) 
                                         ,s(Y))
                                     ,le#(Y,X))
            3: if#(true(),s(X),s(Y)) ->        
                 c_5(gcd#(minus(X,Y),s(Y)))    
            2: if#(false(),s(X),s(Y)) ->       
                 c_4(gcd#(minus(Y,X),s(X)))    
            4: le#(s(X),s(Y)) -> c_8(le#(X,Y)) 
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            minus(X,0()) -> X
            minus(X,s(Y)) -> pred(minus(X,Y))
            pred(s(X)) -> X
          Signature:
            {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).