(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(X, s(Y)) →+ pred(minus(X, Y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)