We are left with following problem, upon which TcT provides the
certificate YES(?,O(n^1)).
Strict Trs:
{ rev(ls) -> r1(ls, empty())
, r1(empty(), a) -> a
, r1(cons(x, k), a) -> r1(k, cons(x, a)) }
Obligation:
innermost runtime complexity
Answer:
YES(?,O(n^1))
The input was oriented with the instance of 'Small Polynomial Path
Order (PS,1-bounded)' as induced by the safe mapping
safe(rev) = {}, safe(r1) = {2}, safe(empty) = {},
safe(cons) = {1, 2}
and precedence
rev > r1 .
Following symbols are considered recursive:
{r1}
The recursion depth is 1.
For your convenience, here are the satisfied ordering constraints:
rev(ls;) > r1(ls; empty())
r1(empty(); a) > a
r1(cons(; x, k); a) > r1(k; cons(; x, a))
Hurray, we answered YES(?,O(n^1))