(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: a → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
hole_a2_0 :: a
gen_empty:cons3_0 :: Nat → empty:cons

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
r1

(6) Obligation:

Innermost TRS:
Rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: a → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
hole_a2_0 :: a
gen_empty:cons3_0 :: Nat → empty:cons

Generator Equations:
gen_empty:cons3_0(0) ⇔ empty
gen_empty:cons3_0(+(x, 1)) ⇔ cons(hole_a2_0, gen_empty:cons3_0(x))

The following defined symbols remain to be analysed:
r1

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
r1(gen_empty:cons3_0(n5_0), gen_empty:cons3_0(b)) → gen_empty:cons3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Induction Base:
r1(gen_empty:cons3_0(0), gen_empty:cons3_0(b)) →RΩ(1)
gen_empty:cons3_0(b)

Induction Step:
r1(gen_empty:cons3_0(+(n5_0, 1)), gen_empty:cons3_0(b)) →RΩ(1)
r1(gen_empty:cons3_0(n5_0), cons(hole_a2_0, gen_empty:cons3_0(b))) →IH
gen_empty:cons3_0(+(+(b, 1), c6_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: a → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
hole_a2_0 :: a
gen_empty:cons3_0 :: Nat → empty:cons

Lemmas:
r1(gen_empty:cons3_0(n5_0), gen_empty:cons3_0(b)) → gen_empty:cons3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_empty:cons3_0(0) ⇔ empty
gen_empty:cons3_0(+(x, 1)) ⇔ cons(hole_a2_0, gen_empty:cons3_0(x))

No more defined symbols left to analyse.

(10) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
r1(gen_empty:cons3_0(n5_0), gen_empty:cons3_0(b)) → gen_empty:cons3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

(11) BOUNDS(n^1, INF)

(12) Obligation:

Innermost TRS:
Rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))

Types:
rev :: empty:cons → empty:cons
r1 :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: a → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
hole_a2_0 :: a
gen_empty:cons3_0 :: Nat → empty:cons

Lemmas:
r1(gen_empty:cons3_0(n5_0), gen_empty:cons3_0(b)) → gen_empty:cons3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_empty:cons3_0(0) ⇔ empty
gen_empty:cons3_0(+(x, 1)) ⇔ cons(hole_a2_0, gen_empty:cons3_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
r1(gen_empty:cons3_0(n5_0), gen_empty:cons3_0(b)) → gen_empty:cons3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

(14) BOUNDS(n^1, INF)