*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y Weak DP Rules: Weak TRS Rules: Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} Obligation: Innermost basic terms: {copy,f}/{0,cons,n,nil,s} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) All above mentioned rules can be savely removed. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(nil(),y)) -> y Weak DP Rules: Weak TRS Rules: Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} Obligation: Innermost basic terms: {copy,f}/{0,cons,n,nil,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f(cons(nil(),y)) -> y copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {3} by application of Pre({3}) = {1,2}. Here rules are labelled as follows: 1: copy#(0(),y,z) -> c_1(f#(z)) 2: copy#(s(x),y,z) -> c_2(copy#(x ,y ,cons(f(y),z)) ,f#(y)) 3: f#(cons(nil(),y)) -> c_3() *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) Strict TRS Rules: Weak DP Rules: f#(cons(nil(),y)) -> c_3() Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: copy#(0(),y,z) -> c_1(f#(z)) 2: copy#(s(x),y,z) -> c_2(copy#(x ,y ,cons(f(y),z)) ,f#(y)) 3: f#(cons(nil(),y)) -> c_3() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) Strict TRS Rules: Weak DP Rules: copy#(0(),y,z) -> c_1(f#(z)) f#(cons(nil(),y)) -> c_3() Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) -->_1 copy#(0(),y,z) -> c_1(f#(z)):2 -->_2 f#(cons(nil(),y)) -> c_3():3 -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)):1 2:W:copy#(0(),y,z) -> c_1(f#(z)) -->_1 f#(cons(nil(),y)) -> c_3():3 3:W:f#(cons(nil(),y)) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: copy#(0(),y,z) -> c_1(f#(z)) 3: f#(cons(nil(),y)) -> c_3() *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: copy#(s(x),y,z) -> c_2(copy#(x ,y ,cons(f(y),z))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {copy#,f#} TcT has computed the following interpretation: p(0) = [1] p(cons) = [2] p(copy) = [1] x3 + [2] p(f) = [2] x1 + [12] p(n) = [0] p(nil) = [1] p(s) = [1] x1 + [5] p(copy#) = [1] x1 + [8] x2 + [2] x3 + [0] p(f#) = [1] x1 + [2] p(c_1) = [2] p(c_2) = [1] x1 + [0] p(c_3) = [0] Following rules are strictly oriented: copy#(s(x),y,z) = [1] x + [8] y + [2] z + [5] > [1] x + [8] y + [4] = c_2(copy#(x,y,cons(f(y),z))) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: copy#(s(x),y,z) -> c_2(copy#(x ,y ,cons(f(y),z))) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(cons(nil(),y)) -> y Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} Obligation: Innermost basic terms: {copy#,f#}/{0,cons,n,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).