(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y), z) → gcd(-(max(x, y), min(x, y)), s(min(x, y)), z)
gcd(x, s(y), s(z)) → gcd(x, -(max(y, z), min(y, z)), s(min(y, z)))
gcd(s(x), y, s(z)) → gcd(-(max(x, z), min(x, z)), y, s(min(x, z)))
gcd(x, 0, 0) → x
gcd(0, y, 0) → y
gcd(0, 0, z) → z
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)