*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) Weak DP Rules: Weak TRS Rules: Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(-) = [1] x1 + [1] p(0) = [4] p(div) = [1] x1 + [1] x2 + [7] p(false) = [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [0] p(lt) = [0] p(s) = [1] x1 + [0] p(true) = [0] Following rules are strictly oriented: -(x,0()) = [1] x + [1] > [1] x + [0] = x -(0(),s(y)) = [5] > [4] = 0() div(x,0()) = [1] x + [11] > [4] = 0() div(0(),y) = [1] y + [11] > [4] = 0() Following rules are (at-least) weakly oriented: -(s(x),s(y)) = [1] x + [1] >= [1] x + [1] = -(x,y) div(s(x),s(y)) = [1] x + [1] y + [7] >= [1] x + [1] y + [12] = if(lt(x,y) ,0() ,s(div(-(x,y),s(y)))) if(false(),x,y) = [1] x + [1] y + [0] >= [1] y + [0] = y if(true(),x,y) = [1] x + [1] y + [0] >= [1] x + [0] = x lt(x,0()) = [0] >= [0] = false() lt(0(),s(y)) = [0] >= [0] = true() lt(s(x),s(y)) = [0] >= [0] = lt(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: -(s(x),s(y)) -> -(x,y) div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() div(x,0()) -> 0() div(0(),y) -> 0() Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(-) = [1] x1 + [0] p(0) = [0] p(div) = [1] x1 + [8] x2 + [1] p(false) = [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [9] p(lt) = [8] p(s) = [1] x1 + [0] p(true) = [7] Following rules are strictly oriented: if(false(),x,y) = [1] x + [1] y + [9] > [1] y + [0] = y if(true(),x,y) = [1] x + [1] y + [16] > [1] x + [0] = x lt(x,0()) = [8] > [0] = false() lt(0(),s(y)) = [8] > [7] = true() Following rules are (at-least) weakly oriented: -(x,0()) = [1] x + [0] >= [1] x + [0] = x -(0(),s(y)) = [0] >= [0] = 0() -(s(x),s(y)) = [1] x + [0] >= [1] x + [0] = -(x,y) div(x,0()) = [1] x + [1] >= [0] = 0() div(0(),y) = [8] y + [1] >= [0] = 0() div(s(x),s(y)) = [1] x + [8] y + [1] >= [1] x + [8] y + [18] = if(lt(x,y) ,0() ,s(div(-(x,y),s(y)))) lt(s(x),s(y)) = [8] >= [8] = lt(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: -(s(x),s(y)) -> -(x,y) div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) lt(s(x),s(y)) -> lt(x,y) Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() div(x,0()) -> 0() div(0(),y) -> 0() if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(-) = [1] x1 + [8] p(0) = [0] p(div) = [1] x1 + [1] x2 + [1] p(false) = [0] p(if) = [1] x1 + [2] x2 + [1] x3 + [8] p(lt) = [0] p(s) = [1] x1 + [2] p(true) = [0] Following rules are strictly oriented: -(s(x),s(y)) = [1] x + [10] > [1] x + [8] = -(x,y) Following rules are (at-least) weakly oriented: -(x,0()) = [1] x + [8] >= [1] x + [0] = x -(0(),s(y)) = [8] >= [0] = 0() div(x,0()) = [1] x + [1] >= [0] = 0() div(0(),y) = [1] y + [1] >= [0] = 0() div(s(x),s(y)) = [1] x + [1] y + [5] >= [1] x + [1] y + [21] = if(lt(x,y) ,0() ,s(div(-(x,y),s(y)))) if(false(),x,y) = [2] x + [1] y + [8] >= [1] y + [0] = y if(true(),x,y) = [2] x + [1] y + [8] >= [1] x + [0] = x lt(x,0()) = [0] >= [0] = false() lt(0(),s(y)) = [0] >= [0] = true() lt(s(x),s(y)) = [0] >= [0] = lt(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) lt(s(x),s(y)) -> lt(x,y) Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {-,div,if,lt} TcT has computed the following interpretation: p(-) = [1] x1 + [0] p(0) = [0] p(div) = [6] x1 + [0] p(false) = [1] p(if) = [2] x1 + [1] x2 + [1] x3 + [1] p(lt) = [8] p(s) = [1] x1 + [5] p(true) = [8] Following rules are strictly oriented: div(s(x),s(y)) = [6] x + [30] > [6] x + [22] = if(lt(x,y) ,0() ,s(div(-(x,y),s(y)))) Following rules are (at-least) weakly oriented: -(x,0()) = [1] x + [0] >= [1] x + [0] = x -(0(),s(y)) = [0] >= [0] = 0() -(s(x),s(y)) = [1] x + [5] >= [1] x + [0] = -(x,y) div(x,0()) = [6] x + [0] >= [0] = 0() div(0(),y) = [0] >= [0] = 0() if(false(),x,y) = [1] x + [1] y + [3] >= [1] y + [0] = y if(true(),x,y) = [1] x + [1] y + [17] >= [1] x + [0] = x lt(x,0()) = [8] >= [1] = false() lt(0(),s(y)) = [8] >= [8] = true() lt(s(x),s(y)) = [8] >= [8] = lt(x,y) *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: lt(s(x),s(y)) -> lt(x,y) Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {-,div,if,lt} TcT has computed the following interpretation: p(-) = x1 p(0) = 0 p(div) = x1 + x1^2 p(false) = 0 p(if) = x1 + x2 + x3 p(lt) = x1 p(s) = 1 + x1 p(true) = 0 Following rules are strictly oriented: lt(s(x),s(y)) = 1 + x > x = lt(x,y) Following rules are (at-least) weakly oriented: -(x,0()) = x >= x = x -(0(),s(y)) = 0 >= 0 = 0() -(s(x),s(y)) = 1 + x >= x = -(x,y) div(x,0()) = x + x^2 >= 0 = 0() div(0(),y) = 0 >= 0 = 0() div(s(x),s(y)) = 2 + 3*x + x^2 >= 1 + 2*x + x^2 = if(lt(x,y) ,0() ,s(div(-(x,y),s(y)))) if(false(),x,y) = x + y >= y = y if(true(),x,y) = x + y >= x = x lt(x,0()) = x >= 0 = false() lt(0(),s(y)) = 0 >= 0 = true() *** 1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {-,div,if,lt}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).