(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(u), s(v)) →+ le(u, v)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)