*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Weak DP Rules: Weak TRS Rules: f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [2] p(False) = [4] p(Nil) = [1] p(True) = [6] p(f) = [1] x1 + [6] p(f[Ite][False][Ite]) = [1] x1 + [1] x2 + [0] p(g) = [2] p(g[Ite][False][Ite]) = [1] x1 + [0] p(goal) = [4] x1 + [1] x2 + [0] p(lt0) = [0] p(notEmpty) = [4] x1 + [0] p(number4) = [0] Following rules are strictly oriented: f(x,Cons(x',xs)) = [1] x + [6] > [1] x + [0] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Cons(x',xs)) = [2] > [0] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) notEmpty(Cons(x,xs)) = [4] x + [4] xs + [8] > [6] = True() Following rules are (at-least) weakly oriented: f(x,Nil()) = [1] x + [6] >= [13] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [1] x + [1] xs + [6] ,Cons(x,xs) ,y) >= [1] xs + [6] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] x' + [6] ,x' ,Cons(x,xs)) >= [1] x' + [6] = f(x',xs) g(x,Nil()) = [2] >= [13] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [4] ,Cons(x,xs) ,y) >= [2] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [6] ,x' ,Cons(x,xs)) >= [2] = g(x',xs) goal(x,y) = [4] x + [1] y + [0] >= [1] x + [13] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [4] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [0] >= [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [0] >= [6] = True() notEmpty(Nil()) = [4] >= [4] = False() number4(n) = [0] >= [13] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) notEmpty(Cons(x,xs)) -> True() Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [7] p(Nil) = [2] p(True) = [2] p(f) = [3] x1 + [1] x2 + [1] p(f[Ite][False][Ite]) = [1] x1 + [3] x2 + [1] x3 + [0] p(g) = [3] p(g[Ite][False][Ite]) = [1] x1 + [2] p(goal) = [4] x1 + [1] x2 + [7] p(lt0) = [0] p(notEmpty) = [2] x1 + [5] p(number4) = [2] Following rules are strictly oriented: goal(x,y) = [4] x + [1] y + [7] > [3] x + [1] y + [6] = Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Nil()) = [9] > [7] = False() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [3] x + [1] x' + [1] xs + [1] >= [3] x + [1] x' + [1] xs + [0] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f(x,Nil()) = [3] x + [3] >= [10] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [3] x + [3] xs + [1] y + [7] ,Cons(x,xs) ,y) >= [3] xs + [1] y + [5] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] x + [3] x' + [1] xs + [2] ,x' ,Cons(x,xs)) >= [3] x' + [1] xs + [1] = f(x',xs) g(x,Cons(x',xs)) = [3] >= [2] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Nil()) = [3] >= [10] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [9] ,Cons(x,xs) ,y) >= [3] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [4] ,x' ,Cons(x,xs)) >= [3] = g(x',xs) lt0(x,Nil()) = [0] >= [7] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [0] >= [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [0] >= [2] = True() notEmpty(Cons(x,xs)) = [2] x + [2] xs + [5] >= [2] = True() number4(n) = [2] >= [10] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [0] p(Nil) = [0] p(True) = [0] p(f) = [1] x2 + [5] p(f[Ite][False][Ite]) = [1] x1 + [1] x3 + [5] p(g) = [0] p(g[Ite][False][Ite]) = [1] x1 + [0] p(goal) = [1] x2 + [5] p(lt0) = [1] x2 + [0] p(notEmpty) = [0] p(number4) = [1] x1 + [1] Following rules are strictly oriented: f(x,Nil()) = [5] > [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) number4(n) = [1] n + [1] > [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [1] x' + [1] xs + [5] >= [1] x' + [1] xs + [5] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f[Ite][False][Ite](False() = [1] y + [5] ,Cons(x,xs) ,y) >= [1] y + [5] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] x + [1] xs + [5] ,x' ,Cons(x,xs)) >= [1] xs + [5] = f(x',xs) g(x,Cons(x',xs)) = [0] >= [0] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Nil()) = [0] >= [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [0] ,Cons(x,xs) ,y) >= [0] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [0] ,x' ,Cons(x,xs)) >= [0] = g(x',xs) goal(x,y) = [1] y + [5] >= [1] y + [5] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [1] x + [1] xs + [0] >= [1] xs + [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [1] x' + [1] xs + [0] >= [0] = True() notEmpty(Cons(x,xs)) = [0] >= [0] = True() notEmpty(Nil()) = [0] >= [0] = False() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [0] p(Nil) = [0] p(True) = [0] p(f) = [1] p(f[Ite][False][Ite]) = [1] x1 + [1] p(g) = [1] p(g[Ite][False][Ite]) = [1] x1 + [1] p(goal) = [3] x1 + [4] p(lt0) = [1] x2 + [0] p(notEmpty) = [1] p(number4) = [1] x1 + [5] Following rules are strictly oriented: g(x,Nil()) = [1] > [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [1] >= [1] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f(x,Nil()) = [1] >= [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [1] ,Cons(x,xs) ,y) >= [1] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] ,x' ,Cons(x,xs)) >= [1] = f(x',xs) g(x,Cons(x',xs)) = [1] >= [1] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g[Ite][False][Ite](False() = [1] ,Cons(x,xs) ,y) >= [1] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [1] ,x' ,Cons(x,xs)) >= [1] = g(x',xs) goal(x,y) = [3] x + [4] >= [2] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [1] x + [1] xs + [0] >= [1] xs + [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [1] x' + [1] xs + [0] >= [0] = True() notEmpty(Cons(x,xs)) = [1] >= [0] = True() notEmpty(Nil()) = [1] >= [0] = False() number4(n) = [1] n + [5] >= [0] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [1] p(False) = [0] p(Nil) = [0] p(True) = [2] p(f) = [4] x1 + [1] x2 + [5] p(f[Ite][False][Ite]) = [1] x1 + [4] x2 + [1] x3 + [3] p(g) = [8] x1 + [4] p(g[Ite][False][Ite]) = [2] x1 + [8] x2 + [0] p(goal) = [13] x1 + [1] x2 + [11] p(lt0) = [2] x2 + [0] p(notEmpty) = [13] x1 + [4] p(number4) = [9] Following rules are strictly oriented: lt0(Cons(x',xs'),Cons(x,xs)) = [2] x + [2] xs + [2] > [2] xs + [0] = lt0(xs',xs) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [4] x + [1] x' + [1] xs + [6] >= [4] x + [1] x' + [1] xs + [6] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f(x,Nil()) = [4] x + [5] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [4] x + [4] xs + [1] y + [7] ,Cons(x,xs) ,y) >= [4] xs + [1] y + [7] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] x + [4] x' + [1] xs + [6] ,x' ,Cons(x,xs)) >= [4] x' + [1] xs + [5] = f(x',xs) g(x,Cons(x',xs)) = [8] x + [4] >= [8] x + [4] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Nil()) = [8] x + [4] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [8] x + [8] xs + [8] ,Cons(x,xs) ,y) >= [8] xs + [4] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [8] x' + [4] ,x' ,Cons(x,xs)) >= [8] x' + [4] = g(x',xs) goal(x,y) = [13] x + [1] y + [11] >= [12] x + [1] y + [11] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Nil(),Cons(x',xs)) = [2] x' + [2] xs + [2] >= [2] = True() notEmpty(Cons(x,xs)) = [13] x + [13] xs + [17] >= [2] = True() notEmpty(Nil()) = [4] >= [0] = False() number4(n) = [9] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) *** 1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: lt0(x,Nil()) -> False() lt0(Nil(),Cons(x',xs)) -> True() Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [1] p(False) = [0] p(Nil) = [0] p(True) = [4] p(f) = [8] x1 + [5] p(f[Ite][False][Ite]) = [1] x1 + [8] x2 + [1] p(g) = [4] x1 + [4] p(g[Ite][False][Ite]) = [1] x1 + [4] x2 + [0] p(goal) = [12] x1 + [4] x2 + [11] p(lt0) = [4] p(notEmpty) = [10] x1 + [4] p(number4) = [4] x1 + [4] Following rules are strictly oriented: lt0(x,Nil()) = [4] > [0] = False() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [8] x + [5] >= [8] x + [5] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f(x,Nil()) = [8] x + [5] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [8] x + [8] xs + [9] ,Cons(x,xs) ,y) >= [8] xs + [5] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [8] x' + [5] ,x' ,Cons(x,xs)) >= [8] x' + [5] = f(x',xs) g(x,Cons(x',xs)) = [4] x + [4] >= [4] x + [4] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Nil()) = [4] x + [4] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [4] x + [4] xs + [4] ,Cons(x,xs) ,y) >= [4] xs + [4] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [4] x' + [4] ,x' ,Cons(x,xs)) >= [4] x' + [4] = g(x',xs) goal(x,y) = [12] x + [4] y + [11] >= [12] x + [11] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(Cons(x',xs'),Cons(x,xs)) = [4] >= [4] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [4] >= [4] = True() notEmpty(Cons(x,xs)) = [10] x + [10] xs + [14] >= [4] = True() notEmpty(Nil()) = [4] >= [0] = False() number4(n) = [4] n + [4] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: lt0(Nil(),Cons(x',xs)) -> True() Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [1] p(False) = [1] p(Nil) = [0] p(True) = [0] p(f) = [2] x1 + [1] x2 + [9] p(f[Ite][False][Ite]) = [1] x1 + [2] x2 + [1] x3 + [8] p(g) = [3] x1 + [1] x2 + [4] p(g[Ite][False][Ite]) = [1] x1 + [3] x2 + [1] x3 + [3] p(goal) = [5] x1 + [4] x2 + [15] p(lt0) = [1] p(notEmpty) = [4] x1 + [1] p(number4) = [4] Following rules are strictly oriented: lt0(Nil(),Cons(x',xs)) = [1] > [0] = True() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [2] x + [1] x' + [1] xs + [10] >= [2] x + [1] x' + [1] xs + [10] = f[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) f(x,Nil()) = [2] x + [9] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False() = [2] x + [2] xs + [1] y + [11] ,Cons(x,xs) ,y) >= [2] xs + [1] y + [11] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True() = [1] x + [2] x' + [1] xs + [9] ,x' ,Cons(x,xs)) >= [2] x' + [1] xs + [9] = f(x',xs) g(x,Cons(x',xs)) = [3] x + [1] x' + [1] xs + [5] >= [3] x + [1] x' + [1] xs + [5] = g[Ite][False][Ite](lt0(x ,Cons(Nil(),Nil())) ,x ,Cons(x',xs)) g(x,Nil()) = [3] x + [4] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False() = [3] x + [3] xs + [1] y + [7] ,Cons(x,xs) ,y) >= [3] xs + [1] y + [6] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True() = [1] x + [3] x' + [1] xs + [4] ,x' ,Cons(x,xs)) >= [3] x' + [1] xs + [4] = g(x',xs) goal(x,y) = [5] x + [4] y + [15] >= [5] x + [2] y + [15] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [1] >= [1] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [1] >= [1] = lt0(xs',xs) notEmpty(Cons(x,xs)) = [4] x + [4] xs + [5] >= [0] = True() notEmpty(Nil()) = [1] >= [1] = False() number4(n) = [4] >= [4] = Cons(Nil() ,Cons(Nil() ,Cons(Nil(),Cons(Nil(),Nil())))) *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}/{Cons,False,Nil,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).