We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs)
  , g(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , g(x, Cons(x', xs)) ->
    g[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , f(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , f(x, Cons(x', xs)) ->
    f[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , number4(n) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , notEmpty(Nil()) -> False()
  , notEmpty(Cons(x, xs)) -> True()
  , goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil())) }
Weak Trs:
  { f[Ite][False][Ite](True(), x', Cons(x, xs)) -> f(x', xs)
  , f[Ite][False][Ite](False(), Cons(x, xs), y) ->
    f(xs, Cons(Cons(Nil(), Nil()), y))
  , g[Ite][False][Ite](True(), x', Cons(x, xs)) -> g(x', xs)
  , g[Ite][False][Ite](False(), Cons(x, xs), y) ->
    g(xs, Cons(Cons(Nil(), Nil()), y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following dependency tuples:

Strict DPs:
  { lt0^#(x, Nil()) -> c_1()
  , lt0^#(Nil(), Cons(x', xs)) -> c_2()
  , lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , number4^#(n) -> c_8()
  , notEmpty^#(Nil()) -> c_9()
  , notEmpty^#(Cons(x, xs)) -> c_10()
  , goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y)) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(x, Nil()) -> c_1()
  , lt0^#(Nil(), Cons(x', xs)) -> c_2()
  , lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , number4^#(n) -> c_8()
  , notEmpty^#(Nil()) -> c_9()
  , notEmpty^#(Cons(x, xs)) -> c_10()
  , goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y)) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { f[Ite][False][Ite](True(), x', Cons(x, xs)) -> f(x', xs)
  , f[Ite][False][Ite](False(), Cons(x, xs), y) ->
    f(xs, Cons(Cons(Nil(), Nil()), y))
  , lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs)
  , g(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , g(x, Cons(x', xs)) ->
    g[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , f(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , f(x, Cons(x', xs)) ->
    f[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , g[Ite][False][Ite](True(), x', Cons(x, xs)) -> g(x', xs)
  , g[Ite][False][Ite](False(), Cons(x, xs), y) ->
    g(xs, Cons(Cons(Nil(), Nil()), y))
  , number4(n) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , notEmpty(Nil()) -> False()
  , notEmpty(Cons(x, xs)) -> True()
  , goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil())) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {1,2,8,9,10} by
applications of Pre({1,2,8,9,10}) = {3,5,7}. Here rules are labeled
as follows:

  DPs:
    { 1: lt0^#(x, Nil()) -> c_1()
    , 2: lt0^#(Nil(), Cons(x', xs)) -> c_2()
    , 3: lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
    , 4: g^#(x, Nil()) -> c_4()
    , 5: g^#(x, Cons(x', xs)) ->
         c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                  x,
                                  Cons(x', xs)),
             lt0^#(x, Cons(Nil(), Nil())))
    , 6: f^#(x, Nil()) -> c_6()
    , 7: f^#(x, Cons(x', xs)) ->
         c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                  x,
                                  Cons(x', xs)),
             lt0^#(x, Cons(Nil(), Nil())))
    , 8: number4^#(n) -> c_8()
    , 9: notEmpty^#(Nil()) -> c_9()
    , 10: notEmpty^#(Cons(x, xs)) -> c_10()
    , 11: goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y))
    , 12: g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
          c_14(g^#(x', xs))
    , 13: g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
          c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
    , 14: f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
          c_12(f^#(x', xs))
    , 15: f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
          c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y)) }
Weak DPs:
  { lt0^#(x, Nil()) -> c_1()
  , lt0^#(Nil(), Cons(x', xs)) -> c_2()
  , g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , number4^#(n) -> c_8()
  , notEmpty^#(Nil()) -> c_9()
  , notEmpty^#(Cons(x, xs)) -> c_10() }
Weak Trs:
  { f[Ite][False][Ite](True(), x', Cons(x, xs)) -> f(x', xs)
  , f[Ite][False][Ite](False(), Cons(x, xs), y) ->
    f(xs, Cons(Cons(Nil(), Nil()), y))
  , lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs)
  , g(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , g(x, Cons(x', xs)) ->
    g[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , f(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , f(x, Cons(x', xs)) ->
    f[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , g[Ite][False][Ite](True(), x', Cons(x, xs)) -> g(x', xs)
  , g[Ite][False][Ite](False(), Cons(x, xs), y) ->
    g(xs, Cons(Cons(Nil(), Nil()), y))
  , number4(n) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , notEmpty(Nil()) -> False()
  , notEmpty(Cons(x, xs)) -> True()
  , goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil())) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ lt0^#(x, Nil()) -> c_1()
, lt0^#(Nil(), Cons(x', xs)) -> c_2()
, number4^#(n) -> c_8()
, notEmpty^#(Nil()) -> c_9()
, notEmpty^#(Cons(x, xs)) -> c_10() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y)) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { f[Ite][False][Ite](True(), x', Cons(x, xs)) -> f(x', xs)
  , f[Ite][False][Ite](False(), Cons(x, xs), y) ->
    f(xs, Cons(Cons(Nil(), Nil()), y))
  , lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs)
  , g(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , g(x, Cons(x', xs)) ->
    g[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , f(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , f(x, Cons(x', xs)) ->
    f[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , g[Ite][False][Ite](True(), x', Cons(x, xs)) -> g(x', xs)
  , g[Ite][False][Ite](False(), Cons(x, xs), y) ->
    g(xs, Cons(Cons(Nil(), Nil()), y))
  , number4(n) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , notEmpty(Nil()) -> False()
  , notEmpty(Cons(x, xs)) -> True()
  , goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil())) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Consider the dependency graph

  1: lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
     -->_1 lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs)) :1
  
  2: g^#(x, Nil()) -> c_4()
  
  3: g^#(x, Cons(x', xs)) ->
     c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                              x,
                              Cons(x', xs)),
         lt0^#(x, Cons(Nil(), Nil())))
     -->_1 g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
           c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y))) :8
     -->_1 g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
           c_14(g^#(x', xs)) :7
     -->_2 lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs)) :1
  
  4: f^#(x, Nil()) -> c_6()
  
  5: f^#(x, Cons(x', xs)) ->
     c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                              x,
                              Cons(x', xs)),
         lt0^#(x, Cons(Nil(), Nil())))
     -->_1 f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
           c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) :10
     -->_1 f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
           c_12(f^#(x', xs)) :9
     -->_2 lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs)) :1
  
  6: goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y))
     -->_1 f^#(x, Cons(x', xs)) ->
           c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :5
     -->_1 f^#(x, Nil()) -> c_6() :4
     -->_2 g^#(x, Cons(x', xs)) ->
           c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :3
     -->_2 g^#(x, Nil()) -> c_4() :2
  
  7: g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
     c_14(g^#(x', xs))
     -->_1 g^#(x, Cons(x', xs)) ->
           c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :3
     -->_1 g^#(x, Nil()) -> c_4() :2
  
  8: g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
     c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
     -->_1 g^#(x, Cons(x', xs)) ->
           c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :3
  
  9: f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
     c_12(f^#(x', xs))
     -->_1 f^#(x, Cons(x', xs)) ->
           c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :5
     -->_1 f^#(x, Nil()) -> c_6() :4
  
  10: f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
      c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y)))
     -->_1 f^#(x, Cons(x', xs)) ->
           c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                    x,
                                    Cons(x', xs)),
               lt0^#(x, Cons(Nil(), Nil()))) :5
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { goal^#(x, y) -> c_11(f^#(x, y), g^#(x, y)) }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { f[Ite][False][Ite](True(), x', Cons(x, xs)) -> f(x', xs)
  , f[Ite][False][Ite](False(), Cons(x, xs), y) ->
    f(xs, Cons(Cons(Nil(), Nil()), y))
  , lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs)
  , g(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , g(x, Cons(x', xs)) ->
    g[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , f(x, Nil()) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , f(x, Cons(x', xs)) ->
    f[Ite][False][Ite](lt0(x, Cons(Nil(), Nil())), x, Cons(x', xs))
  , g[Ite][False][Ite](True(), x', Cons(x, xs)) -> g(x', xs)
  , g[Ite][False][Ite](False(), Cons(x, xs), y) ->
    g(xs, Cons(Cons(Nil(), Nil()), y))
  , number4(n) ->
    Cons(Nil(), Cons(Nil(), Cons(Nil(), Cons(Nil(), Nil()))))
  , notEmpty(Nil()) -> False()
  , notEmpty(Cons(x, xs)) -> True()
  , goal(x, y) -> Cons(f(x, y), Cons(g(x, y), Nil())) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { lt0(x, Nil()) -> False()
    , lt0(Nil(), Cons(x', xs)) -> True()
    , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Nil()) -> c_4()
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: g^#(x, Nil()) -> c_4() }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_7) = {1, 2},
    Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1},
    Uargs(c_15) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                                [True] = [0]                  
                                                              
                                 [Nil] = [4]                  
                                                              
                         [lt0](x1, x2) = [0]                  
                                                              
                        [Cons](x1, x2) = [1] x2 + [0]         
                                                              
                               [False] = [0]                  
                                                              
                       [lt0^#](x1, x2) = [0]                  
                                                              
                             [c_3](x1) = [4] x1 + [0]         
                                                              
                         [g^#](x1, x2) = [2] x2 + [0]         
                                                              
                                 [c_4] = [3]                  
                                                              
                         [c_5](x1, x2) = [1] x1 + [4] x2 + [0]
                                                              
    [g[Ite][False][Ite]^#](x1, x2, x3) = [2] x3 + [0]         
                                                              
                         [f^#](x1, x2) = [0]                  
                                                              
                                 [c_6] = [0]                  
                                                              
                         [c_7](x1, x2) = [4] x1 + [4] x2 + [0]
                                                              
    [f[Ite][False][Ite]^#](x1, x2, x3) = [0]                  
                                                              
                            [c_12](x1) = [2] x1 + [0]         
                                                              
                            [c_13](x1) = [2] x1 + [0]         
                                                              
                            [c_14](x1) = [1] x1 + [0]         
                                                              
                            [c_15](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                                    [lt0(x, Nil())] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [False()]                                            
                                                                                                            
                         [lt0(Nil(), Cons(x', xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [True()]                                             
                                                                                                            
                  [lt0(Cons(x', xs'), Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [lt0(xs', xs)]                                       
                                                                                                            
                [lt0^#(Cons(x', xs'), Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_3(lt0^#(xs', xs))]                                
                                                                                                            
                                    [g^#(x, Nil())] =  [8]                                                  
                                                    >  [3]                                                  
                                                    =  [c_4()]                                              
                                                                                                            
                             [g^#(x, Cons(x', xs))] =  [2] xs + [0]                                         
                                                    >= [2] xs + [0]                                         
                                                    =  [c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [g[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [2] xs + [0]                                         
                                                    >= [2] xs + [0]                                         
                                                    =  [c_14(g^#(x', xs))]                                  
                                                                                                            
    [g[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [2] y + [0]                                          
                                                    >= [2] y + [0]                                          
                                                    =  [c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            
                                    [f^#(x, Nil())] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_6()]                                              
                                                                                                            
                             [f^#(x, Cons(x', xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [f[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_12(f^#(x', xs))]                                  
                                                                                                            
    [f[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g^#(x, Nil()) -> c_4()
  , g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ g^#(x, Nil()) -> c_4() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Nil()) -> c_6()
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 3: f^#(x, Nil()) -> c_6() }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_7) = {1, 2},
    Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1},
    Uargs(c_15) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                                [True] = [0]                  
                                                              
                                 [Nil] = [4]                  
                                                              
                         [lt0](x1, x2) = [0]                  
                                                              
                        [Cons](x1, x2) = [1] x2 + [0]         
                                                              
                               [False] = [0]                  
                                                              
                       [lt0^#](x1, x2) = [0]                  
                                                              
                             [c_3](x1) = [4] x1 + [0]         
                                                              
                         [g^#](x1, x2) = [0]                  
                                                              
                                 [c_4] = [0]                  
                                                              
                         [c_5](x1, x2) = [1] x1 + [4] x2 + [0]
                                                              
    [g[Ite][False][Ite]^#](x1, x2, x3) = [0]                  
                                                              
                         [f^#](x1, x2) = [2] x2 + [0]         
                                                              
                                 [c_6] = [3]                  
                                                              
                         [c_7](x1, x2) = [1] x1 + [4] x2 + [0]
                                                              
    [f[Ite][False][Ite]^#](x1, x2, x3) = [2] x3 + [0]         
                                                              
                            [c_12](x1) = [1] x1 + [0]         
                                                              
                            [c_13](x1) = [1] x1 + [0]         
                                                              
                            [c_14](x1) = [1] x1 + [0]         
                                                              
                            [c_15](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                                    [lt0(x, Nil())] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [False()]                                            
                                                                                                            
                         [lt0(Nil(), Cons(x', xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [True()]                                             
                                                                                                            
                  [lt0(Cons(x', xs'), Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [lt0(xs', xs)]                                       
                                                                                                            
                [lt0^#(Cons(x', xs'), Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_3(lt0^#(xs', xs))]                                
                                                                                                            
                             [g^#(x, Cons(x', xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [g[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_14(g^#(x', xs))]                                  
                                                                                                            
    [g[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [0]                                                  
                                                    >= [0]                                                  
                                                    =  [c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            
                                    [f^#(x, Nil())] =  [8]                                                  
                                                    >  [3]                                                  
                                                    =  [c_6()]                                              
                                                                                                            
                             [f^#(x, Cons(x', xs))] =  [2] xs + [0]                                         
                                                    >= [2] xs + [0]                                         
                                                    =  [c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [f[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [2] xs + [0]                                         
                                                    >= [2] xs + [0]                                         
                                                    =  [c_12(f^#(x', xs))]                                  
                                                                                                            
    [f[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [2] y + [0]                                          
                                                    >= [2] y + [0]                                          
                                                    =  [c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f^#(x, Nil()) -> c_6()
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ f^#(x, Nil()) -> c_6() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil()))) }
Weak DPs:
  { g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , 2: g^#(x, Cons(x', xs)) ->
       c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                x,
                                Cons(x', xs)),
           lt0^#(x, Cons(Nil(), Nil())))
  , 3: f^#(x, Cons(x', xs)) ->
       c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                x,
                                Cons(x', xs)),
           lt0^#(x, Cons(Nil(), Nil())))
  , 7: f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
       c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_7) = {1, 2},
    Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1},
    Uargs(c_15) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                                [True] = [1]                           
                                                                       
                                 [Nil] = [0]                           
                                                                       
                         [lt0](x1, x2) = [1]                           
                                                                       
                        [Cons](x1, x2) = [1] x2 + [3]                  
                                                                       
                               [False] = [1]                           
                                                                       
                       [lt0^#](x1, x2) = [1] x2 + [1]                  
                                                                       
                             [c_3](x1) = [1] x1 + [2]                  
                                                                       
                         [g^#](x1, x2) = [4] x1 + [2] x2 + [7]         
                                                                       
                                 [c_4] = [0]                           
                                                                       
                         [c_5](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                                       
    [g[Ite][False][Ite]^#](x1, x2, x3) = [1] x1 + [4] x2 + [2] x3 + [0]
                                                                       
                         [f^#](x1, x2) = [4] x1 + [2] x2 + [5]         
                                                                       
                                 [c_6] = [0]                           
                                                                       
                         [c_7](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                                       
    [f[Ite][False][Ite]^#](x1, x2, x3) = [4] x2 + [2] x3 + [0]         
                                                                       
                            [c_12](x1) = [1] x1 + [1]                  
                                                                       
                            [c_13](x1) = [1] x1 + [0]                  
                                                                       
                            [c_14](x1) = [1] x1 + [0]                  
                                                                       
                            [c_15](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                                    [lt0(x, Nil())] =  [1]                                                  
                                                    >= [1]                                                  
                                                    =  [False()]                                            
                                                                                                            
                         [lt0(Nil(), Cons(x', xs))] =  [1]                                                  
                                                    >= [1]                                                  
                                                    =  [True()]                                             
                                                                                                            
                  [lt0(Cons(x', xs'), Cons(x, xs))] =  [1]                                                  
                                                    >= [1]                                                  
                                                    =  [lt0(xs', xs)]                                       
                                                                                                            
                [lt0^#(Cons(x', xs'), Cons(x, xs))] =  [1] xs + [4]                                         
                                                    >  [1] xs + [3]                                         
                                                    =  [c_3(lt0^#(xs', xs))]                                
                                                                                                            
                             [g^#(x, Cons(x', xs))] =  [2] xs + [4] x + [13]                                
                                                    >  [2] xs + [4] x + [11]                                
                                                    =  [c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [g[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [4] x' + [2] xs + [7]                                
                                                    >= [4] x' + [2] xs + [7]                                
                                                    =  [c_14(g^#(x', xs))]                                  
                                                                                                            
    [g[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [4] xs + [2] y + [13]                                
                                                    >= [4] xs + [2] y + [13]                                
                                                    =  [c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            
                             [f^#(x, Cons(x', xs))] =  [2] xs + [4] x + [11]                                
                                                    >  [2] xs + [4] x + [10]                                
                                                    =  [c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                                                                 x,                         
                                                                                 Cons(x', xs)),             
                                                            lt0^#(x, Cons(Nil(), Nil())))]                  
                                                                                                            
    [f[Ite][False][Ite]^#(True(), x', Cons(x, xs))] =  [4] x' + [2] xs + [6]                                
                                                    >= [4] x' + [2] xs + [6]                                
                                                    =  [c_12(f^#(x', xs))]                                  
                                                                                                            
    [f[Ite][False][Ite]^#(False(), Cons(x, xs), y)] =  [4] xs + [2] y + [12]                                
                                                    >  [4] xs + [2] y + [11]                                
                                                    =  [c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y)))]         
                                                                                                            

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , 2: g^#(x, Cons(x', xs)) ->
       c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                x,
                                Cons(x', xs)),
           lt0^#(x, Cons(Nil(), Nil())))
  , 3: f^#(x, Cons(x', xs)) ->
       c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                                x,
                                Cons(x', xs)),
           lt0^#(x, Cons(Nil(), Nil())))
  , 4: g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
       c_14(g^#(x', xs))
  , 5: g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
       c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , 6: f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
       c_12(f^#(x', xs))
  , 7: f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
       c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,2,3,7}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7}, their number of application is
equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
  , g^#(x, Cons(x', xs)) ->
    c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_14(g^#(x', xs))
  , g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
  , f^#(x, Cons(x', xs)) ->
    c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                             x,
                             Cons(x', xs)),
        lt0^#(x, Cons(Nil(), Nil())))
  , f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
    c_12(f^#(x', xs))
  , f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
    c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }
Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ lt0^#(Cons(x', xs'), Cons(x, xs)) -> c_3(lt0^#(xs', xs))
, g^#(x, Cons(x', xs)) ->
  c_5(g[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                           x,
                           Cons(x', xs)),
      lt0^#(x, Cons(Nil(), Nil())))
, g[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
  c_14(g^#(x', xs))
, g[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
  c_15(g^#(xs, Cons(Cons(Nil(), Nil()), y)))
, f^#(x, Cons(x', xs)) ->
  c_7(f[Ite][False][Ite]^#(lt0(x, Cons(Nil(), Nil())),
                           x,
                           Cons(x', xs)),
      lt0^#(x, Cons(Nil(), Nil())))
, f[Ite][False][Ite]^#(True(), x', Cons(x, xs)) ->
  c_12(f^#(x', xs))
, f[Ite][False][Ite]^#(False(), Cons(x, xs), y) ->
  c_13(f^#(xs, Cons(Cons(Nil(), Nil()), y))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { lt0(x, Nil()) -> False()
  , lt0(Nil(), Cons(x', xs)) -> True()
  , lt0(Cons(x', xs'), Cons(x, xs)) -> lt0(xs', xs) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))