(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt0(Nil, Cons(x', xs)) → True
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
number4(n) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
The (relative) TRS S consists of the following rules:
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → f(xs, Cons(Cons(Nil, Nil), y))
f[Ite][False][Ite](True, x', Cons(x, xs)) → f(x', xs)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
g[Ite][False][Ite](False, Cons(z0, z1), z2) → g(z1, Cons(Cons(Nil, Nil), z2))
g[Ite][False][Ite](True, z0, Cons(z1, z2)) → g(z0, z2)
f[Ite][False][Ite](False, Cons(z0, z1), z2) → f(z1, Cons(Cons(Nil, Nil), z2))
f[Ite][False][Ite](True, z0, Cons(z1, z2)) → f(z0, z2)
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
g(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
g(z0, Cons(z1, z2)) → g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
f(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
f(z0, Cons(z1, z2)) → f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
number4(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
goal(z0, z1) → Cons(f(z0, z1), Cons(g(z0, z1), Nil))
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Nil, Cons(z0, z1)) → c4
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
LT0(z0, Nil) → c6
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
NOTEMPTY(Cons(z0, z1)) → c11
NOTEMPTY(Nil) → c12
NUMBER4(z0) → c13
GOAL(z0, z1) → c14(F(z0, z1), G(z0, z1))
S tuples:
LT0(Nil, Cons(z0, z1)) → c4
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
LT0(z0, Nil) → c6
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
NOTEMPTY(Cons(z0, z1)) → c11
NOTEMPTY(Nil) → c12
NUMBER4(z0) → c13
GOAL(z0, z1) → c14(F(z0, z1), G(z0, z1))
K tuples:none
Defined Rule Symbols:
lt0, g, f, notEmpty, number4, goal, g[Ite][False][Ite], f[Ite][False][Ite]
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F, NOTEMPTY, NUMBER4, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c14(F(z0, z1), G(z0, z1))
Removed 5 trailing nodes:
NOTEMPTY(Cons(z0, z1)) → c11
NUMBER4(z0) → c13
NOTEMPTY(Nil) → c12
LT0(Nil, Cons(z0, z1)) → c4
LT0(z0, Nil) → c6
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
g[Ite][False][Ite](False, Cons(z0, z1), z2) → g(z1, Cons(Cons(Nil, Nil), z2))
g[Ite][False][Ite](True, z0, Cons(z1, z2)) → g(z0, z2)
f[Ite][False][Ite](False, Cons(z0, z1), z2) → f(z1, Cons(Cons(Nil, Nil), z2))
f[Ite][False][Ite](True, z0, Cons(z1, z2)) → f(z0, z2)
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
g(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
g(z0, Cons(z1, z2)) → g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
f(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
f(z0, Cons(z1, z2)) → f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
number4(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
goal(z0, z1) → Cons(f(z0, z1), Cons(g(z0, z1), Nil))
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
K tuples:none
Defined Rule Symbols:
lt0, g, f, notEmpty, number4, goal, g[Ite][False][Ite], f[Ite][False][Ite]
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
g[Ite][False][Ite](False, Cons(z0, z1), z2) → g(z1, Cons(Cons(Nil, Nil), z2))
g[Ite][False][Ite](True, z0, Cons(z1, z2)) → g(z0, z2)
f[Ite][False][Ite](False, Cons(z0, z1), z2) → f(z1, Cons(Cons(Nil, Nil), z2))
f[Ite][False][Ite](True, z0, Cons(z1, z2)) → f(z0, z2)
g(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
g(z0, Cons(z1, z2)) → g[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
f(z0, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
f(z0, Cons(z1, z2)) → f[Ite][False][Ite](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2))
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
number4(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))
goal(z0, z1) → Cons(f(z0, z1), Cons(g(z0, z1), Nil))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
K tuples:none
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(z0, Nil) → c7
We considered the (Usable) Rules:none
And the Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = 0
POL(F(x1, x2)) = 0
POL(F[ITE][FALSE][ITE](x1, x2, x3)) = 0
POL(False) = [2]
POL(G(x1, x2)) = [4]
POL(G[ITE][FALSE][ITE](x1, x2, x3)) = [4]
POL(LT0(x1, x2)) = 0
POL(Nil) = 0
POL(True) = [3]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7) = 0
POL(c8(x1, x2)) = x1 + x2
POL(c9) = 0
POL(lt0(x1, x2)) = [2] + [3]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
K tuples:
G(z0, Nil) → c7
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, Nil) → c9
We considered the (Usable) Rules:none
And the Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = 0
POL(F(x1, x2)) = [1]
POL(F[ITE][FALSE][ITE](x1, x2, x3)) = [1]
POL(False) = 0
POL(G(x1, x2)) = 0
POL(G[ITE][FALSE][ITE](x1, x2, x3)) = 0
POL(LT0(x1, x2)) = 0
POL(Nil) = [2]
POL(True) = [2]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7) = 0
POL(c8(x1, x2)) = x1 + x2
POL(c9) = 0
POL(lt0(x1, x2)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
K tuples:
G(z0, Nil) → c7
F(z0, Nil) → c9
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
We considered the (Usable) Rules:none
And the Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [4] + x2
POL(F(x1, x2)) = [4] + [2]x1 + x2
POL(F[ITE][FALSE][ITE](x1, x2, x3)) = [2]x2 + x3
POL(False) = [4]
POL(G(x1, x2)) = 0
POL(G[ITE][FALSE][ITE](x1, x2, x3)) = 0
POL(LT0(x1, x2)) = 0
POL(Nil) = [2]
POL(True) = [2]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7) = 0
POL(c8(x1, x2)) = x1 + x2
POL(c9) = 0
POL(lt0(x1, x2)) = [4] + [2]x1 + [2]x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
K tuples:
G(z0, Nil) → c7
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
We considered the (Usable) Rules:none
And the Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [4] + x2
POL(F(x1, x2)) = [4] + [5]x1 + [4]x2
POL(F[ITE][FALSE][ITE](x1, x2, x3)) = [5]x2 + [4]x3
POL(False) = 0
POL(G(x1, x2)) = [2] + [5]x1 + [4]x2
POL(G[ITE][FALSE][ITE](x1, x2, x3)) = [5]x2 + [4]x3
POL(LT0(x1, x2)) = [1]
POL(Nil) = [4]
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7) = 0
POL(c8(x1, x2)) = x1 + x2
POL(c9) = 0
POL(lt0(x1, x2)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
K tuples:
G(z0, Nil) → c7
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
We considered the (Usable) Rules:none
And the Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [4] + x2
POL(F(x1, x2)) = [4] + [3]x1 + [2]x2
POL(F[ITE][FALSE][ITE](x1, x2, x3)) = [3]x2 + [2]x3
POL(False) = 0
POL(G(x1, x2)) = [4] + [5]x1 + [4]x2
POL(G[ITE][FALSE][ITE](x1, x2, x3)) = [5]x2 + [4]x3
POL(LT0(x1, x2)) = x2
POL(Nil) = 0
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7) = 0
POL(c8(x1, x2)) = x1 + x2
POL(c9) = 0
POL(lt0(x1, x2)) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
lt0(Nil, Cons(z0, z1)) → True
lt0(Cons(z0, z1), Cons(z2, z3)) → lt0(z1, z3)
lt0(z0, Nil) → False
Tuples:
G[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c(G(z1, Cons(Cons(Nil, Nil), z2)))
G[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c1(G(z0, z2))
F[ITE][FALSE][ITE](False, Cons(z0, z1), z2) → c2(F(z1, Cons(Cons(Nil, Nil), z2)))
F[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c3(F(z0, z2))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
G(z0, Nil) → c7
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
S tuples:none
K tuples:
G(z0, Nil) → c7
F(z0, Nil) → c9
F(z0, Cons(z1, z2)) → c10(F[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
G(z0, Cons(z1, z2)) → c8(G[ITE][FALSE][ITE](lt0(z0, Cons(Nil, Nil)), z0, Cons(z1, z2)), LT0(z0, Cons(Nil, Nil)))
LT0(Cons(z0, z1), Cons(z2, z3)) → c5(LT0(z1, z3))
Defined Rule Symbols:
lt0
Defined Pair Symbols:
G[ITE][FALSE][ITE], F[ITE][FALSE][ITE], LT0, G, F
Compound Symbols:
c, c1, c2, c3, c5, c7, c8, c9, c10
(17) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(18) BOUNDS(1, 1)