(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
qs(x', Cons(x, xs)) → app(Cons(x, Nil), Cons(x', quicksort(xs)))
quicksort(Cons(x, Cons(x', xs))) → qs(x, part(x, Cons(x', xs), Nil, Nil))
quicksort(Cons(x, Nil)) → Cons(x, Nil)
quicksort(Nil) → Nil
part(x', Cons(x, xs), xs1, xs2) → part[Ite](>(x', x), x', Cons(x, xs), xs1, xs2)
part(x, Nil, xs1, xs2) → app(xs1, xs2)
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
app(Nil, ys) → ys
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
>(S(x), S(y)) → >(x, y)
>(0, y) → False
>(S(x), 0) → True
part[Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, Cons(x, xs1), xs2)
part[False][Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, Cons(x, xs2))
part[Ite](False, x', Cons(x, xs), xs1, xs2) → part[False][Ite](<(x', x), x', Cons(x, xs), xs1, xs2)
part[False][Ite](False, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, xs2)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
qs(x', Cons(x, xs)) → app(Cons(x, Nil), Cons(x', quicksort(xs)))
quicksort(Cons(x, Cons(x', xs))) → qs(x, part(x, Cons(x', xs), Nil, Nil))
quicksort(Cons(x, Nil)) → Cons(x, Nil)
quicksort(Nil) → Nil
part(x', Cons(x, xs), xs1, xs2) → part[Ite](>(x', x), x', Cons(x, xs), xs1, xs2)
part(x, Nil, xs1, xs2) → app(xs1, xs2)
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
app(Nil, ys) → ys
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
>(S(x), S(y)) → >(x, y)
>(0', y) → False
>(S(x), 0') → True
part[Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, Cons(x, xs1), xs2)
part[False][Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, Cons(x, xs2))
part[Ite](False, x', Cons(x, xs), xs1, xs2) → part[False][Ite](<(x', x), x', Cons(x, xs), xs1, xs2)
part[False][Ite](False, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, xs2)
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
qs(x', Cons(x, xs)) → app(Cons(x, Nil), Cons(x', quicksort(xs)))
quicksort(Cons(x, Cons(x', xs))) → qs(x, part(x, Cons(x', xs), Nil, Nil))
quicksort(Cons(x, Nil)) → Cons(x, Nil)
quicksort(Nil) → Nil
part(x', Cons(x, xs), xs1, xs2) → part[Ite](>(x', x), x', Cons(x, xs), xs1, xs2)
part(x, Nil, xs1, xs2) → app(xs1, xs2)
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
app(Nil, ys) → ys
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
>(S(x), S(y)) → >(x, y)
>(0', y) → False
>(S(x), 0') → True
part[Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, Cons(x, xs1), xs2)
part[False][Ite](True, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, Cons(x, xs2))
part[Ite](False, x', Cons(x, xs), xs1, xs2) → part[False][Ite](<(x', x), x', Cons(x, xs), xs1, xs2)
part[False][Ite](False, x', Cons(x, xs), xs1, xs2) → part(x', xs, xs1, xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
app,
quicksort,
part,
>,
<They will be analysed ascendingly in the following order:
app < quicksort
app < part
part < quicksort
> < part
< < part
(6) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
app, quicksort, part, >, <
They will be analysed ascendingly in the following order:
app < quicksort
app < part
part < quicksort
> < part
< < part
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
app(
gen_Cons:Nil4_0(
n7_0),
gen_Cons:Nil4_0(
b)) →
gen_Cons:Nil4_0(
+(
n7_0,
b)), rt ∈ Ω(1 + n7
0)
Induction Base:
app(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(b)) →RΩ(1)
gen_Cons:Nil4_0(b)
Induction Step:
app(gen_Cons:Nil4_0(+(n7_0, 1)), gen_Cons:Nil4_0(b)) →RΩ(1)
Cons(0', app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b))) →IH
Cons(0', gen_Cons:Nil4_0(+(b, c8_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
>, quicksort, part, <
They will be analysed ascendingly in the following order:
part < quicksort
> < part
< < part
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
>(
gen_S:0'5_0(
n916_0),
gen_S:0'5_0(
n916_0)) →
False, rt ∈ Ω(0)
Induction Base:
>(gen_S:0'5_0(0), gen_S:0'5_0(0)) →RΩ(0)
False
Induction Step:
>(gen_S:0'5_0(+(n916_0, 1)), gen_S:0'5_0(+(n916_0, 1))) →RΩ(0)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) →IH
False
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
<, quicksort, part
They will be analysed ascendingly in the following order:
part < quicksort
< < part
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
<(
gen_S:0'5_0(
n1221_0),
gen_S:0'5_0(
+(
1,
n1221_0))) →
True, rt ∈ Ω(0)
Induction Base:
<(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) →RΩ(0)
True
Induction Step:
<(gen_S:0'5_0(+(n1221_0, 1)), gen_S:0'5_0(+(1, +(n1221_0, 1)))) →RΩ(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) →IH
True
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) → True, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
part, quicksort
They will be analysed ascendingly in the following order:
part < quicksort
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
part(
gen_S:0'5_0(
0),
gen_Cons:Nil4_0(
n1532_0),
gen_Cons:Nil4_0(
c),
gen_Cons:Nil4_0(
d)) →
gen_Cons:Nil4_0(
+(
c,
d)), rt ∈ Ω(1 + c + n1532
0)
Induction Base:
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(1)
app(gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →LΩ(1 + c)
gen_Cons:Nil4_0(+(c, d))
Induction Step:
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(+(n1532_0, 1)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(1)
part[Ite](>(gen_S:0'5_0(0), 0'), gen_S:0'5_0(0), Cons(0', gen_Cons:Nil4_0(n1532_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →LΩ(0)
part[Ite](False, gen_S:0'5_0(0), Cons(0', gen_Cons:Nil4_0(n1532_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(0)
part[False][Ite](<(gen_S:0'5_0(0), 0'), gen_S:0'5_0(0), Cons(0', gen_Cons:Nil4_0(n1532_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(0)
part[False][Ite](False, gen_S:0'5_0(0), Cons(0', gen_Cons:Nil4_0(n1532_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(0)
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(n1532_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →IH
gen_Cons:Nil4_0(+(c, d))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) → True, rt ∈ Ω(0)
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(n1532_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → gen_Cons:Nil4_0(+(c, d)), rt ∈ Ω(1 + c + n15320)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
quicksort
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quicksort.
(20) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) → True, rt ∈ Ω(0)
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(n1532_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → gen_Cons:Nil4_0(+(c, d)), rt ∈ Ω(1 + c + n15320)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) → True, rt ∈ Ω(0)
part(gen_S:0'5_0(0), gen_Cons:Nil4_0(n1532_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → gen_Cons:Nil4_0(+(c, d)), rt ∈ Ω(1 + c + n15320)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
<(gen_S:0'5_0(n1221_0), gen_S:0'5_0(+(1, n1221_0))) → True, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(28) BOUNDS(n^1, INF)
(29) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
>(gen_S:0'5_0(n916_0), gen_S:0'5_0(n916_0)) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
qs(
x',
Cons(
x,
xs)) →
app(
Cons(
x,
Nil),
Cons(
x',
quicksort(
xs)))
quicksort(
Cons(
x,
Cons(
x',
xs))) →
qs(
x,
part(
x,
Cons(
x',
xs),
Nil,
Nil))
quicksort(
Cons(
x,
Nil)) →
Cons(
x,
Nil)
quicksort(
Nil) →
Nilpart(
x',
Cons(
x,
xs),
xs1,
xs2) →
part[Ite](
>(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part(
x,
Nil,
xs1,
xs2) →
app(
xs1,
xs2)
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
app(
Nil,
ys) →
ysnotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
False<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
False>(
S(
x),
S(
y)) →
>(
x,
y)
>(
0',
y) →
False>(
S(
x),
0') →
Truepart[Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
Cons(
x,
xs1),
xs2)
part[False][Ite](
True,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
Cons(
x,
xs2))
part[Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part[False][Ite](
<(
x',
x),
x',
Cons(
x,
xs),
xs1,
xs2)
part[False][Ite](
False,
x',
Cons(
x,
xs),
xs1,
xs2) →
part(
x',
xs,
xs1,
xs2)
Types:
qs :: S:0' → Cons:Nil → Cons:Nil
Cons :: S:0' → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
quicksort :: Cons:Nil → Cons:Nil
part :: S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
part[Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
> :: S:0' → S:0' → True:False
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
< :: S:0' → S:0' → True:False
S :: S:0' → S:0'
0' :: S:0'
part[False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n7_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(34) BOUNDS(n^1, INF)