(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(S(x), x2) → f(x2, x)
f(0, x2) → 0
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(S(x), x2) → f(x2, x)
f(0', x2) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(S(x), x2) → f(x2, x)
f(0', x2) → 0'
Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_S:0'2_0(
n4_0),
gen_S:0'2_0(
n4_0)) →
gen_S:0'2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_S:0'2_0(0), gen_S:0'2_0(0)) →RΩ(1)
0'
Induction Step:
f(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(+(n4_0, 1))) →RΩ(1)
f(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(n4_0)) →RΩ(1)
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) →IH
gen_S:0'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
f(
S(
x),
x2) →
f(
x2,
x)
f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_S:0'2_0(n4_0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)