(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
save(S(x)) → dbl(0, save(x))
save(0) → 0
dbl(0, y) → y
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
dbl(S(0'), S(0')) → S(S(S(S(0'))))
save(S(x)) → dbl(0', save(x))
save(0') → 0'
dbl(0', y) → y
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
dbl(S(0'), S(0')) → S(S(S(S(0'))))
save(S(x)) → dbl(0', save(x))
save(0') → 0'
dbl(0', y) → y
Types:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
save :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
save
(6) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
save(
S(
x)) →
dbl(
0',
save(
x))
save(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
save :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
The following defined symbols remain to be analysed:
save
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
save(
gen_0':S2_0(
n4_0)) →
gen_0':S2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
save(gen_0':S2_0(0)) →RΩ(1)
0'
Induction Step:
save(gen_0':S2_0(+(n4_0, 1))) →RΩ(1)
dbl(0', save(gen_0':S2_0(n4_0))) →IH
dbl(0', gen_0':S2_0(0)) →RΩ(1)
gen_0':S2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
save(
S(
x)) →
dbl(
0',
save(
x))
save(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
save :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Lemmas:
save(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
save(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
dbl(
S(
0'),
S(
0')) →
S(
S(
S(
S(
0'))))
save(
S(
x)) →
dbl(
0',
save(
x))
save(
0') →
0'dbl(
0',
y) →
yTypes:
dbl :: 0':S → 0':S → 0':S
S :: 0':S → 0':S
0' :: 0':S
save :: 0':S → 0':S
hole_0':S1_0 :: 0':S
gen_0':S2_0 :: Nat → 0':S
Lemmas:
save(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':S2_0(0) ⇔ 0'
gen_0':S2_0(+(x, 1)) ⇔ S(gen_0':S2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
save(gen_0':S2_0(n4_0)) → gen_0':S2_0(0), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)