(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
loop(Cons(x, xs), Nil, pp, ss) → False
loop(Cons(x', xs'), Cons(x, xs), pp, ss) → loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss)
loop(Nil, s, pp, ss) → True
match1(p, s) → loop(p, s, p, s)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0, S(y)) → False
!EQ(S(x), 0) → False
!EQ(0, 0) → True
loop[Ite](False, p, s, pp, Cons(x, xs)) → loop(pp, xs, pp, xs)
loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) → loop(xs', xs, pp, ss)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
loop(Cons(x, xs), Nil, pp, ss) → False
loop(Cons(x', xs'), Cons(x, xs), pp, ss) → loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss)
loop(Nil, s, pp, ss) → True
match1(p, s) → loop(p, s, p, s)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
loop[Ite](False, p, s, pp, Cons(x, xs)) → loop(pp, xs, pp, xs)
loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) → loop(xs', xs, pp, ss)
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
loop(Cons(x, xs), Nil, pp, ss) → False
loop(Cons(x', xs'), Cons(x, xs), pp, ss) → loop[Ite](!EQ(x', x), Cons(x', xs'), Cons(x, xs), pp, ss)
loop(Nil, s, pp, ss) → True
match1(p, s) → loop(p, s, p, s)
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
loop[Ite](False, p, s, pp, Cons(x, xs)) → loop(pp, xs, pp, xs)
loop[Ite](True, Cons(x', xs'), Cons(x, xs), pp, ss) → loop(xs', xs, pp, ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
loop,
!EQThey will be analysed ascendingly in the following order:
!EQ < loop
(6) Obligation:
Innermost TRS:
Rules:
loop(
Cons(
x,
xs),
Nil,
pp,
ss) →
Falseloop(
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop[Ite](
!EQ(
x',
x),
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss)
loop(
Nil,
s,
pp,
ss) →
Truematch1(
p,
s) →
loop(
p,
s,
p,
s)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueloop[Ite](
False,
p,
s,
pp,
Cons(
x,
xs)) →
loop(
pp,
xs,
pp,
xs)
loop[Ite](
True,
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop(
xs',
xs,
pp,
ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
!EQ, loop
They will be analysed ascendingly in the following order:
!EQ < loop
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
!EQ(
gen_S:0'5_0(
n7_0),
gen_S:0'5_0(
+(
1,
n7_0))) →
False, rt ∈ Ω(0)
Induction Base:
!EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) →RΩ(0)
False
Induction Step:
!EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) →RΩ(0)
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) →IH
False
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
loop(
Cons(
x,
xs),
Nil,
pp,
ss) →
Falseloop(
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop[Ite](
!EQ(
x',
x),
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss)
loop(
Nil,
s,
pp,
ss) →
Truematch1(
p,
s) →
loop(
p,
s,
p,
s)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueloop[Ite](
False,
p,
s,
pp,
Cons(
x,
xs)) →
loop(
pp,
xs,
pp,
xs)
loop[Ite](
True,
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop(
xs',
xs,
pp,
ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
loop
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
loop(
gen_Cons:Nil4_0(
+(
1,
n306_0)),
gen_Cons:Nil4_0(
n306_0),
gen_Cons:Nil4_0(
c),
gen_Cons:Nil4_0(
d)) →
False, rt ∈ Ω(1 + n306
0)
Induction Base:
loop(gen_Cons:Nil4_0(+(1, 0)), gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(1)
False
Induction Step:
loop(gen_Cons:Nil4_0(+(1, +(n306_0, 1))), gen_Cons:Nil4_0(+(n306_0, 1)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(1)
loop[Ite](!EQ(0', 0'), Cons(0', gen_Cons:Nil4_0(+(1, n306_0))), Cons(0', gen_Cons:Nil4_0(n306_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(0)
loop[Ite](True, Cons(0', gen_Cons:Nil4_0(+(1, n306_0))), Cons(0', gen_Cons:Nil4_0(n306_0)), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →RΩ(0)
loop(gen_Cons:Nil4_0(+(1, n306_0)), gen_Cons:Nil4_0(n306_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
loop(
Cons(
x,
xs),
Nil,
pp,
ss) →
Falseloop(
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop[Ite](
!EQ(
x',
x),
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss)
loop(
Nil,
s,
pp,
ss) →
Truematch1(
p,
s) →
loop(
p,
s,
p,
s)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueloop[Ite](
False,
p,
s,
pp,
Cons(
x,
xs)) →
loop(
pp,
xs,
pp,
xs)
loop[Ite](
True,
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop(
xs',
xs,
pp,
ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
loop(gen_Cons:Nil4_0(+(1, n306_0)), gen_Cons:Nil4_0(n306_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → False, rt ∈ Ω(1 + n3060)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
loop(gen_Cons:Nil4_0(+(1, n306_0)), gen_Cons:Nil4_0(n306_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → False, rt ∈ Ω(1 + n3060)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
loop(
Cons(
x,
xs),
Nil,
pp,
ss) →
Falseloop(
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop[Ite](
!EQ(
x',
x),
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss)
loop(
Nil,
s,
pp,
ss) →
Truematch1(
p,
s) →
loop(
p,
s,
p,
s)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueloop[Ite](
False,
p,
s,
pp,
Cons(
x,
xs)) →
loop(
pp,
xs,
pp,
xs)
loop[Ite](
True,
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop(
xs',
xs,
pp,
ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
loop(gen_Cons:Nil4_0(+(1, n306_0)), gen_Cons:Nil4_0(n306_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → False, rt ∈ Ω(1 + n3060)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
loop(gen_Cons:Nil4_0(+(1, n306_0)), gen_Cons:Nil4_0(n306_0), gen_Cons:Nil4_0(c), gen_Cons:Nil4_0(d)) → False, rt ∈ Ω(1 + n3060)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
loop(
Cons(
x,
xs),
Nil,
pp,
ss) →
Falseloop(
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop[Ite](
!EQ(
x',
x),
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss)
loop(
Nil,
s,
pp,
ss) →
Truematch1(
p,
s) →
loop(
p,
s,
p,
s)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueloop[Ite](
False,
p,
s,
pp,
Cons(
x,
xs)) →
loop(
pp,
xs,
pp,
xs)
loop[Ite](
True,
Cons(
x',
xs'),
Cons(
x,
xs),
pp,
ss) →
loop(
xs',
xs,
pp,
ss)
Types:
loop :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
loop[Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
True :: False:True
match1 :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(1) was proven with the following lemma:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
(20) BOUNDS(1, INF)