*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        inssort(xs) -> isort(xs,Nil())
        isort(Cons(x,xs),r) -> isort(xs,insert(x,r))
        isort(Nil(),r) -> r
      Weak DP Rules:
        
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_5()
      Weak DPs
        <#(x,0()) -> c_6()
        <#(0(),S(y)) -> c_7()
        <#(S(x),S(y)) -> c_8(<#(x,y))
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        insert[Ite][False][Ite]#(True(),x,r) -> c_10()
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_6()
        <#(0(),S(y)) -> c_7()
        <#(S(x),S(y)) -> c_8(<#(x,y))
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        insert[Ite][False][Ite]#(True(),x,r) -> c_10()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        inssort(xs) -> isort(xs,Nil())
        isort(Cons(x,xs),r) -> isort(xs,insert(x,r))
        isort(Nil(),r) -> r
      Signature:
        { False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        <#(x,0()) -> c_6()
        <#(0(),S(y)) -> c_7()
        <#(S(x),S(y)) -> c_8(<#(x,y))
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        insert[Ite][False][Ite]#(True(),x,r) -> c_10()
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_5()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_6()
        <#(0(),S(y)) -> c_7()
        <#(S(x),S(y)) -> c_8(<#(x,y))
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        insert[Ite][False][Ite]#(True(),x,r) -> c_10()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()                               
        2:  insert#(x',Cons(x,xs)) ->                               
              c_2(insert[Ite][False][Ite]#(<(x'                     
                                            ,x)                     
                                          ,x'                       
                                          ,Cons(x,xs))              
                 ,<#(x',x))                                         
        3:  inssort#(xs) -> c_3(isort#(xs                           
                                      ,Nil()))                      
        4:  isort#(Cons(x,xs),r) ->                                 
              c_4(isort#(xs,insert(x,r))                            
                 ,insert#(x,r))                                     
        5:  isort#(Nil(),r) -> c_5()                                
        6:  <#(x,0()) -> c_6()                                      
        7:  <#(0(),S(y)) -> c_7()                                   
        8:  <#(S(x),S(y)) -> c_8(<#(x,y))                           
        9:  insert[Ite][False][Ite]#(False()                        
                                    ,x'                             
                                    ,Cons(x,xs)) -> c_9(insert#(x'  
                                                               ,xs))
        10: insert[Ite][False][Ite]#(True()                         
                                    ,x                              
                                    ,r) -> c_10()                   
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_6()
        <#(0(),S(y)) -> c_7()
        <#(S(x),S(y)) -> c_8(<#(x,y))
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        insert[Ite][False][Ite]#(True(),x,r) -> c_10()
        isort#(Nil(),r) -> c_5()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()
           
        
        2:S:insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
           -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):8
           -->_2 <#(S(x),S(y)) -> c_8(<#(x,y)):7
           -->_1 insert[Ite][False][Ite]#(True(),x,r) -> c_10():9
           -->_2 <#(0(),S(y)) -> c_7():6
           -->_2 <#(x,0()) -> c_6():5
        
        3:S:inssort#(xs) -> c_3(isort#(xs,Nil()))
           -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
           -->_1 isort#(Nil(),r) -> c_5():10
        
        4:S:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
           -->_1 isort#(Nil(),r) -> c_5():10
           -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
           -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):2
           -->_2 insert#(x,Nil()) -> c_1():1
        
        5:W:<#(x,0()) -> c_6()
           
        
        6:W:<#(0(),S(y)) -> c_7()
           
        
        7:W:<#(S(x),S(y)) -> c_8(<#(x,y))
           -->_1 <#(S(x),S(y)) -> c_8(<#(x,y)):7
           -->_1 <#(0(),S(y)) -> c_7():6
           -->_1 <#(x,0()) -> c_6():5
        
        8:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
           -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):2
           -->_1 insert#(x,Nil()) -> c_1():1
        
        9:W:insert[Ite][False][Ite]#(True(),x,r) -> c_10()
           
        
        10:W:isort#(Nil(),r) -> c_5()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: isort#(Nil(),r) -> c_5()             
        9:  insert[Ite][False][Ite]#(True()      
                                    ,x           
                                    ,r) -> c_10()
        7:  <#(S(x),S(y)) -> c_8(<#(x,y))        
        5:  <#(x,0()) -> c_6()                   
        6:  <#(0(),S(y)) -> c_7()                
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()
           
        
        2:S:insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
           -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):8
        
        3:S:inssort#(xs) -> c_3(isort#(xs,Nil()))
           -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
        
        4:S:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
           -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
           -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):2
           -->_2 insert#(x,Nil()) -> c_1():1
        
        8:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
           -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):2
           -->_1 insert#(x,Nil()) -> c_1():1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        inssort#(xs) -> c_3(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()
         
      
      2:S:insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
         -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):5
      
      3:S:inssort#(xs) -> c_3(isort#(xs,Nil()))
         -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
      
      4:S:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
         -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
         -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
         -->_2 insert#(x,Nil()) -> c_1():1
      
      5:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
         -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
         -->_1 insert#(x,Nil()) -> c_1():1
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(3,inssort#(xs) -> c_3(isort#(xs,Nil())))]
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(x,Nil()) -> c_1()
        insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(x,Nil()) -> Cons(x,Nil())
        insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1()
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
          isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(x,Nil()) -> Cons(x,Nil())
          insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(x,Nil()) -> c_1()
          insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(x,Nil()) -> Cons(x,Nil())
          insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_1()
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
          isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(x,Nil()) -> Cons(x,Nil())
          insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_1()
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            insert#(x,Nil()) -> c_1()
          Strict TRS Rules:
            
          Weak DP Rules:
            insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { [0]  
                           = c_1()
          
          
          Following rules are (at-least) weakly oriented:
                        insert#(x',Cons(x,xs)) =  [1]                                      
                                               >= [1]                                      
                                               =  c_2(insert[Ite][False][Ite]#(<(x'        
                                                                                ,x)        
                                                                              ,x'          
                                                                              ,Cons(x,xs)))
          
              insert[Ite][False][Ite]#(False() =  [1]                                      
                                           ,x'                                             
                                  ,Cons(x,xs))                                             
                                               >= [1]                                      
                                               =  c_9(insert#(x',xs))                      
          
                          isort#(Cons(x,xs),r) =  [1] x + [1] xs + [1]                     
                                               >= [1] xs + [1]                             
                                               =  c_4(isort#(xs,insert(x,r))               
                                                     ,insert#(x,r))                        
          
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            insert#(x,Nil()) -> c_1()
            insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_1()
            insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_1()
               
            
            2:W:insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
               -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):3
            
            3:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
               -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
               -->_1 insert#(x,Nil()) -> c_1():1
            
            4:W:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
               -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):4
               -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
               -->_2 insert#(x,Nil()) -> c_1():1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            4: isort#(Cons(x,xs),r) ->                                 
                 c_4(isort#(xs,insert(x,r))                            
                    ,insert#(x,r))                                     
            2: insert#(x',Cons(x,xs)) ->                               
                 c_2(insert[Ite][False][Ite]#(<(x'                     
                                               ,x)                     
                                             ,x'                       
                                             ,Cons(x,xs)))             
            3: insert[Ite][False][Ite]#(False()                        
                                       ,x'                             
                                       ,Cons(x,xs)) -> c_9(insert#(x'  
                                                                  ,xs))
            1: insert#(x,Nil()) -> c_1()                               
    *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(x,Nil()) -> c_1()
          insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(x,Nil()) -> Cons(x,Nil())
          insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):4
          
          2:S:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
             -->_2 insert#(x,Nil()) -> c_1():3
             -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):2
             -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
          
          3:W:insert#(x,Nil()) -> c_1()
             
          
          4:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
             -->_1 insert#(x,Nil()) -> c_1():3
             -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert#(x,Nil()) -> c_1()
  *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(x,Nil()) -> Cons(x,Nil())
          insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          Strict TRS Rules:
            
          Weak DP Rules:
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Strict TRS Rules:
            
          Weak DP Rules:
            insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          Strict TRS Rules:
            
          Weak DP Rules:
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            {                  
                 c_2(insert[Ite][False][Ite]#(<(x'        
                                               ,x)        
                                             ,x'          
                                             ,Cons(x,xs)))
            
          Consider the set of all dependency pairs
            1: insert#(x',Cons(x,xs)) ->                               
                 c_2(insert[Ite][False][Ite]#(<(x'                     
                                               ,x)                     
                                             ,x'                       
                                             ,Cons(x,xs)))             
            2: isort#(Cons(x,xs),r) ->                                 
                 c_4(isort#(xs,insert(x,r))                            
                    ,insert#(x,r))                                     
            4: insert[Ite][False][Ite]#(False()                        
                                       ,x'                             
                                       ,Cons(x,xs)) -> c_9(insert#(x'  
                                                                  ,xs))
          Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
          SPACE(?,?)on application of the dependency pairs
            {1}
          These cover all (indirect) predecessors of dependency pairs
            {1,4}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            Strict TRS Rules:
              
            Weak DP Rules:
              insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
              isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { 2 + xs                                   
                                   = c_2(insert[Ite][False][Ite]#(<(x'        
                                                                   ,x)        
                                                                 ,x'          
                                                                 ,Cons(x,xs)))
            
            
            Following rules are (at-least) weakly oriented:
                insert[Ite][False][Ite]#(False() =  2 + xs                             
                                             ,x'                                       
                                    ,Cons(x,xs))                                       
                                                 >= 2 + xs                             
                                                 =  c_9(insert#(x',xs))                
            
                            isort#(Cons(x,xs),r) =  6 + 2*r + 2*r*xs + 6*xs + 2*xs^2   
                                                 >= 5 + r + 2*r*xs + 6*xs + 2*xs^2     
                                                 =  c_4(isort#(xs,insert(x,r))         
                                                       ,insert#(x,r))                  
            
                                 insert(x,Nil()) =  2                                  
                                                 >= 1                                  
                                                 =  Cons(x,Nil())                      
            
                           insert(x',Cons(x,xs)) =  3 + xs                             
                                                 >= 3 + xs                             
                                                 =  insert[Ite][False][Ite](<(x',x)    
                                                                           ,x'         
                                                                           ,Cons(x,xs))
            
                 insert[Ite][False][Ite](False() =  3 + xs                             
                                             ,x'                                       
                                    ,Cons(x,xs))                                       
                                                 >= 3 + xs                             
                                                 =  Cons(x,insert(x',xs))              
            
                  insert[Ite][False][Ite](True() =  2 + r                              
                                              ,x                                       
                                             ,r)                                       
                                                 >= 1 + r                              
                                                 =  Cons(x,r)                          
            
      *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
              insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
              isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
              insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
              isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
                 -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):2
              
              2:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
                 -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
              
              3:W:isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
                 -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):3
                 -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              3: isort#(Cons(x,xs),r) ->                                 
                   c_4(isort#(xs,insert(x,r))                            
                      ,insert#(x,r))                                     
              1: insert#(x',Cons(x,xs)) ->                               
                   c_2(insert[Ite][False][Ite]#(<(x'                     
                                                 ,x)                     
                                               ,x'                       
                                               ,Cons(x,xs)))             
              2: insert[Ite][False][Ite]#(False()                        
                                         ,x'                             
                                         ,Cons(x,xs)) -> c_9(insert#(x'  
                                                                    ,xs))
      *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Strict TRS Rules:
            
          Weak DP Rules:
            insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_4(isort#(xs,insert(x,r)),insert#(x,r))
               -->_2 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
               -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):1
            
            2:W:insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
               -->_1 insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs)):3
            
            3:W:insert[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_9(insert#(x',xs))
               -->_1 insert#(x',Cons(x,xs)) -> c_2(insert[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: insert#(x',Cons(x,xs)) ->                               
                 c_2(insert[Ite][False][Ite]#(<(x'                     
                                               ,x)                     
                                             ,x'                       
                                             ,Cons(x,xs)))             
            3: insert[Ite][False][Ite]#(False()                        
                                       ,x'                             
                                       ,Cons(x,xs)) -> c_9(insert#(x'  
                                                                  ,xs))
    *** 1.1.1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_4(isort#(xs,insert(x,r)),insert#(x,r))
               -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)),insert#(x,r)):1
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)))
    *** 1.1.1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(x,Nil()) -> Cons(x,Nil())
            insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
          Signature:
            {      
                 c_4(isort#(xs,insert(x,r)))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { [1] r + [8] xs + [16]      
                                 = c_4(isort#(xs,insert(x,r)))
            
            
            Following rules are (at-least) weakly oriented:
                                insert(x,Nil()) =  [7]                                
                                                >= [3]                                
                                                =  Cons(x,Nil())                      
            
                          insert(x',Cons(x,xs)) =  [1] xs + [10]                      
                                                >= [1] xs + [10]                      
                                                =  insert[Ite][False][Ite](<(x',x)    
                                                                          ,x'         
                                                                          ,Cons(x,xs))
            
                insert[Ite][False][Ite](False() =  [1] xs + [10]                      
                                            ,x'                                       
                                   ,Cons(x,xs))                                       
                                                >= [1] xs + [10]                      
                                                =  Cons(x,insert(x',xs))              
            
                 insert[Ite][False][Ite](True() =  [1] r + [7]                        
                                             ,x                                       
                                            ,r)                                       
                                                >= [1] r + [3]                        
                                                =  Cons(x,r)                          
            
      *** 1.1.1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r)))
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { c_4(isort#(xs,insert(x,r)))
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              { c_4(isort#(xs,insert(x,r)))
                 -->_1 isort#(Cons(x,xs),r) -> c_4(isort#(xs,insert(x,r))):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: isort#(Cons(x,xs),r) ->      
                   c_4(isort#(xs,insert(x,r)))
      *** 1.1.1.1.1.1.1.2.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              insert(x,Nil()) -> Cons(x,Nil())
              insert(x',Cons(x,xs)) -> insert[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              insert[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
              insert[Ite][False][Ite](True(),x,r) -> Cons(x,r)
            Signature:
              {