We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , isort(Cons(x, xs), r) -> isort(xs, insert(x, r)) , isort(Nil(), r) -> r , inssort(xs) -> isort(xs, Nil()) } Weak Trs: { insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , isort^#(Nil(), r) -> c_4() , inssort^#(xs) -> c_5(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(True(), x, r) -> c_6() , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_7(insert^#(x', xs)) , <^#(x, 0()) -> c_8() , <^#(S(x), S(y)) -> c_9(<^#(x, y)) , <^#(0(), S(y)) -> c_10() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , isort^#(Nil(), r) -> c_4() , inssort^#(xs) -> c_5(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(True(), x, r) -> c_6() , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_7(insert^#(x', xs)) , <^#(x, 0()) -> c_8() , <^#(S(x), S(y)) -> c_9(<^#(x, y)) , <^#(0(), S(y)) -> c_10() } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() , isort(Cons(x, xs), r) -> isort(xs, insert(x, r)) , isort(Nil(), r) -> r , inssort(xs) -> isort(xs, Nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {4} by applications of Pre({4}) = {3,5}. Here rules are labeled as follows: DPs: { 1: insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) , 2: insert^#(x, Nil()) -> c_2() , 3: isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , 4: isort^#(Nil(), r) -> c_4() , 5: inssort^#(xs) -> c_5(isort^#(xs, Nil())) , 6: insert[Ite][False][Ite]^#(True(), x, r) -> c_6() , 7: insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_7(insert^#(x', xs)) , 8: <^#(x, 0()) -> c_8() , 9: <^#(S(x), S(y)) -> c_9(<^#(x, y)) , 10: <^#(0(), S(y)) -> c_10() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , inssort^#(xs) -> c_5(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(True(), x, r) -> c_6() , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_7(insert^#(x', xs)) , <^#(x, 0()) -> c_8() , <^#(S(x), S(y)) -> c_9(<^#(x, y)) , <^#(0(), S(y)) -> c_10() , isort^#(Nil(), r) -> c_4() } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() , isort(Cons(x, xs), r) -> isort(xs, insert(x, r)) , isort(Nil(), r) -> r , inssort(xs) -> isort(xs, Nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { insert[Ite][False][Ite]^#(True(), x, r) -> c_6() , <^#(x, 0()) -> c_8() , <^#(S(x), S(y)) -> c_9(<^#(x, y)) , <^#(0(), S(y)) -> c_10() , isort^#(Nil(), r) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , inssort^#(xs) -> c_5(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_7(insert^#(x', xs)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() , isort(Cons(x, xs), r) -> isort(xs, insert(x, r)) , isort(Nil(), r) -> r , inssort(xs) -> isort(xs, Nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)), <^#(x', x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , inssort^#(xs) -> c_4(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() , isort(Cons(x, xs), r) -> isort(xs, insert(x, r)) , isort(Nil(), r) -> r , inssort(xs) -> isort(xs, Nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) , inssort^#(xs) -> c_4(isort^#(xs, Nil())) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) Consider the dependency graph 1: insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) -->_1 insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) :5 2: insert^#(x, Nil()) -> c_2() 3: isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) -->_1 isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) :3 -->_2 insert^#(x, Nil()) -> c_2() :2 -->_2 insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) :1 4: inssort^#(xs) -> c_4(isort^#(xs, Nil())) -->_1 isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) :3 5: insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) -->_1 insert^#(x, Nil()) -> c_2() :2 -->_1 insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) :1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). { inssort^#(xs) -> c_4(isort^#(xs, Nil())) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert^#(x, Nil()) -> c_2() , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: insert^#(x, Nil()) -> c_2() , 3: isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Trs: { insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_3) = {1, 2}, Uargs(c_5) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [insert](x1, x2) = [4] x2 + [3] [True] = [0] [insert[Ite][False][Ite]](x1, x2, x3) = [2] x1 + [4] x3 + [3] [<](x1, x2) = [0] [S](x1) = [1] x1 + [0] [Cons](x1, x2) = [1] x2 + [3] [Nil] = [1] [0] = [6] [False] = [0] [insert^#](x1, x2) = [2] [insert[Ite][False][Ite]^#](x1, x2, x3) = [6] x1 + [2] [isort^#](x1, x2) = [3] x1 + [0] [c_1](x1) = [1] x1 + [0] [c_2] = [0] [c_3](x1, x2) = [1] x1 + [2] x2 + [0] [c_5](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [insert(x', Cons(x, xs))] = [4] xs + [15] >= [4] xs + [15] = [insert[Ite][False][Ite](<(x', x), x', Cons(x, xs))] [insert(x, Nil())] = [7] > [4] = [Cons(x, Nil())] [insert[Ite][False][Ite](True(), x, r)] = [4] r + [3] >= [1] r + [3] = [Cons(x, r)] [insert[Ite][False][Ite](False(), x', Cons(x, xs))] = [4] xs + [15] > [4] xs + [6] = [Cons(x, insert(x', xs))] [<(x, 0())] = [0] >= [0] = [False()] [<(S(x), S(y))] = [0] >= [0] = [<(x, y)] [<(0(), S(y))] = [0] >= [0] = [True()] [insert^#(x', Cons(x, xs))] = [2] >= [2] = [c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)))] [insert^#(x, Nil())] = [2] > [0] = [c_2()] [insert[Ite][False][Ite]^#(False(), x', Cons(x, xs))] = [2] >= [2] = [c_5(insert^#(x', xs))] [isort^#(Cons(x, xs), r)] = [3] xs + [9] > [3] xs + [4] = [c_3(isort^#(xs, insert(x, r)), insert^#(x, r))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) } Weak DPs: { insert^#(x, Nil()) -> c_2() , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { insert^#(x, Nil()) -> c_2() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We decompose the input problem according to the dependency graph into the upper component { isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } and lower component { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) } Further, following extension rules are added to the lower component. { isort^#(Cons(x, xs), r) -> insert^#(x, r) , isort^#(Cons(x, xs), r) -> isort^#(xs, insert(x, r)) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'Small Polynomial Path Order (PS,1-bounded)' to orient following rules strictly. DPs: { 1: isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Sub-proof: ---------- The input was oriented with the instance of 'Small Polynomial Path Order (PS,1-bounded)' as induced by the safe mapping safe(insert) = {}, safe(True) = {}, safe(insert[Ite][False][Ite]) = {3}, safe(<) = {1, 2}, safe(S) = {1}, safe(Cons) = {1, 2}, safe(Nil) = {}, safe(0) = {}, safe(False) = {}, safe(insert^#) = {}, safe(isort^#) = {2}, safe(c_3) = {} and precedence insert > insert[Ite][False][Ite] . Following symbols are considered recursive: {isort^#} The recursion depth is 1. Further, following argument filtering is employed: pi(insert) = [], pi(True) = [], pi(insert[Ite][False][Ite]) = [1, 3], pi(<) = [1, 2], pi(S) = [], pi(Cons) = [2], pi(Nil) = [], pi(0) = [], pi(False) = [], pi(insert^#) = [], pi(isort^#) = [1], pi(c_3) = [1, 2] Usable defined function symbols are a subset of: {insert^#, isort^#} For your convenience, here are the satisfied ordering constraints: pi(isort^#(Cons(x, xs), r)) = isort^#(Cons(; xs);) > c_3(isort^#(xs;), insert^#();) = pi(c_3(isort^#(xs, insert(x, r)), insert^#(x, r))) The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { isort^#(Cons(x, xs), r) -> c_3(isort^#(xs, insert(x, r)), insert^#(x, r)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) } Weak DPs: { insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , isort^#(Cons(x, xs), r) -> insert^#(x, r) , isort^#(Cons(x, xs), r) -> isort^#(xs, insert(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , 2: insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , 3: isort^#(Cons(x, xs), r) -> insert^#(x, r) , 4: isort^#(Cons(x, xs), r) -> isort^#(xs, insert(x, r)) } Trs: { insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_5) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [insert](x1, x2) = [1] x2 + [4] [True] = [0] [insert[Ite][False][Ite]](x1, x2, x3) = [1] x3 + [4] [<](x1, x2) = [0] [S](x1) = [1] x1 + [0] [Cons](x1, x2) = [1] x2 + [3] [Nil] = [0] [0] = [1] [False] = [0] [insert^#](x1, x2) = [1] x2 + [4] [insert[Ite][False][Ite]^#](x1, x2, x3) = [4] x1 + [1] x3 + [3] [isort^#](x1, x2) = [3] x1 + [2] x2 + [6] [c_1](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [insert(x', Cons(x, xs))] = [1] xs + [7] >= [1] xs + [7] = [insert[Ite][False][Ite](<(x', x), x', Cons(x, xs))] [insert(x, Nil())] = [4] > [3] = [Cons(x, Nil())] [insert[Ite][False][Ite](True(), x, r)] = [1] r + [4] > [1] r + [3] = [Cons(x, r)] [insert[Ite][False][Ite](False(), x', Cons(x, xs))] = [1] xs + [7] >= [1] xs + [7] = [Cons(x, insert(x', xs))] [<(x, 0())] = [0] >= [0] = [False()] [<(S(x), S(y))] = [0] >= [0] = [<(x, y)] [<(0(), S(y))] = [0] >= [0] = [True()] [insert^#(x', Cons(x, xs))] = [1] xs + [7] > [1] xs + [6] = [c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs)))] [insert[Ite][False][Ite]^#(False(), x', Cons(x, xs))] = [1] xs + [6] > [1] xs + [5] = [c_5(insert^#(x', xs))] [isort^#(Cons(x, xs), r)] = [3] xs + [2] r + [15] > [1] r + [4] = [insert^#(x, r)] [isort^#(Cons(x, xs), r)] = [3] xs + [2] r + [15] > [3] xs + [2] r + [14] = [isort^#(xs, insert(x, r))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , isort^#(Cons(x, xs), r) -> insert^#(x, r) , isort^#(Cons(x, xs), r) -> isort^#(xs, insert(x, r)) } Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { insert^#(x', Cons(x, xs)) -> c_1(insert[Ite][False][Ite]^#(<(x', x), x', Cons(x, xs))) , insert[Ite][False][Ite]^#(False(), x', Cons(x, xs)) -> c_5(insert^#(x', xs)) , isort^#(Cons(x, xs), r) -> insert^#(x, r) , isort^#(Cons(x, xs), r) -> isort^#(xs, insert(x, r)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { insert(x', Cons(x, xs)) -> insert[Ite][False][Ite](<(x', x), x', Cons(x, xs)) , insert(x, Nil()) -> Cons(x, Nil()) , insert[Ite][False][Ite](True(), x, r) -> Cons(x, r) , insert[Ite][False][Ite](False(), x', Cons(x, xs)) -> Cons(x, insert(x', xs)) , <(x, 0()) -> False() , <(S(x), S(y)) -> <(x, y) , <(0(), S(y)) -> True() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))