*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} Obligation: Innermost basic terms: {<,insert,insert[Ite],inssort,isort}/{0,Cons,False,Nil,S,True} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() Weak DPs <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() Strict TRS Rules: Weak DP Rules: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() Strict TRS Rules: Weak DP Rules: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {4} by application of Pre({4}) = {2,3}. Here rules are labelled as follows: 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r) ,<#(S(x),x)) 2: inssort#(xs) -> c_2(isort#(xs ,Nil())) 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)) ,insert#(x,r)) 4: isort#(Nil(),r) -> c_4() 5: <#(x,0()) -> c_5() 6: <#(0(),S(y)) -> c_6() 7: <#(S(x),S(y)) -> c_7(<#(x,y)) 8: insert[Ite]#(False() ,x' ,Cons(x,xs)) -> c_8(insert#(x' ,xs)) 9: insert[Ite]#(True(),x,r) -> c_9() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() isort#(Nil(),r) -> c_4() Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7 -->_2 <#(S(x),S(y)) -> c_7(<#(x,y)):6 -->_1 insert[Ite]#(True(),x,r) -> c_9():8 -->_2 <#(x,0()) -> c_5():4 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_1 isort#(Nil(),r) -> c_4():9 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Nil(),r) -> c_4():9 -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 4:W:<#(x,0()) -> c_5() 5:W:<#(0(),S(y)) -> c_6() 6:W:<#(S(x),S(y)) -> c_7(<#(x,y)) -->_1 <#(S(x),S(y)) -> c_7(<#(x,y)):6 -->_1 <#(0(),S(y)) -> c_6():5 -->_1 <#(x,0()) -> c_5():4 7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 8:W:insert[Ite]#(True(),x,r) -> c_9() 9:W:isort#(Nil(),r) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: isort#(Nil(),r) -> c_4() 8: insert[Ite]#(True(),x,r) -> c_9() 6: <#(S(x),S(y)) -> c_7(<#(x,y)) 4: <#(x,0()) -> c_5() 5: <#(0(),S(y)) -> c_6() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):4 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 4:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,inssort#(xs) -> c_2(isort#(xs,Nil())))] *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Problem (S) Strict DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r)) Consider the set of all dependency pairs 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r)) 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)) ,insert#(x,r)) 4: insert[Ite]#(False() ,x' ,Cons(x,xs)) -> c_8(insert#(x' ,xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) Strict TRS Rules: Weak DP Rules: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1,2}, uargs(c_8) = {1} Following symbols are considered usable: {insert,insert[Ite],<#,insert#,insert[Ite]#,inssort#,isort#} TcT has computed the following interpretation: p(0) = 0 p(<) = 2 + x1*x2 + x2 + x2^2 p(Cons) = 1 + x2 p(False) = 0 p(Nil) = 1 p(S) = 0 p(True) = 0 p(insert) = 2 + x2 p(insert[Ite]) = 2 + x3 p(inssort) = 2 + 2*x1 + x1^2 p(isort) = 1 p(<#) = x1 + x1*x2 + 2*x2 p(insert#) = 1 + 2*x2 p(insert[Ite]#) = 2*x2*x3 + 2*x3 p(inssort#) = 2*x1^2 p(isort#) = 2 + 2*x1 + 2*x1*x2 + 2*x1^2 p(c_1) = x1 p(c_2) = 0 p(c_3) = x1 + x2 p(c_4) = 0 p(c_5) = 1 p(c_6) = 1 p(c_7) = 0 p(c_8) = x1 p(c_9) = 0 Following rules are strictly oriented: insert#(S(x),r) = 1 + 2*r > 2*r = c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r)) Following rules are (at-least) weakly oriented: insert[Ite]#(False() = 2 + 2*x' + 2*x'*xs + 2*xs ,x' ,Cons(x,xs)) >= 1 + 2*xs = c_8(insert#(x',xs)) isort#(Cons(x,xs),r) = 6 + 2*r + 2*r*xs + 6*xs + 2*xs^2 >= 3 + 2*r + 2*r*xs + 6*xs + 2*xs^2 = c_3(isort#(xs,insert(x,r)) ,insert#(x,r)) insert(S(x),r) = 2 + r >= 2 + r = insert[Ite](<(S(x),x),S(x),r) insert[Ite](False() = 3 + xs ,x' ,Cons(x,xs)) >= 3 + xs = Cons(x,insert(x',xs)) insert[Ite](True(),x,r) = 2 + r >= 1 + r = Cons(x,r) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):2 2:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 3:W:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)) ,insert#(x,r)) 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r)) 2: insert[Ite]#(False() ,x' ,Cons(x,xs)) -> c_8(insert#(x' ,xs)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2 -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1 2:W:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):3 3:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x) ,S(x) ,r)) 3: insert[Ite]#(False() ,x' ,Cons(x,xs)) -> c_8(insert#(x' ,xs)) *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {<#,insert#,insert[Ite]#,inssort#,isort#} TcT has computed the following interpretation: p(0) = [1] p(<) = [1] x1 + [8] x2 + [6] p(Cons) = [1] x2 + [2] p(False) = [4] p(Nil) = [1] p(S) = [2] p(True) = [0] p(insert) = [3] x1 + [0] p(insert[Ite]) = [3] x3 + [8] p(inssort) = [0] p(isort) = [4] x1 + [1] x2 + [2] p(<#) = [1] x1 + [1] x2 + [1] p(insert#) = [1] p(insert[Ite]#) = [1] x1 + [1] x2 + [0] p(inssort#) = [1] p(isort#) = [8] x1 + [4] p(c_1) = [2] x1 + [0] p(c_2) = [2] x1 + [0] p(c_3) = [1] x1 + [8] p(c_4) = [0] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] p(c_8) = [8] p(c_9) = [8] Following rules are strictly oriented: isort#(Cons(x,xs),r) = [8] xs + [20] > [8] xs + [12] = c_3(isort#(xs,insert(x,r))) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} Obligation: Innermost basic terms: {<#,insert#,insert[Ite]#,inssort#,isort#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).