*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        inssort(xs) -> isort(xs,Nil())
        isort(Cons(x,xs),r) -> isort(xs,insert(x,r))
        isort(Nil(),r) -> Nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_4()
      Weak DPs
        <#(x,0()) -> c_5()
        <#(0(),S(y)) -> c_6()
        <#(S(x),S(y)) -> c_7(<#(x,y))
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        insert[Ite]#(True(),x,r) -> c_9()
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_4()
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_5()
        <#(0(),S(y)) -> c_6()
        <#(S(x),S(y)) -> c_7(<#(x,y))
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        insert[Ite]#(True(),x,r) -> c_9()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
        inssort(xs) -> isort(xs,Nil())
        isort(Cons(x,xs),r) -> isort(xs,insert(x,r))
        isort(Nil(),r) -> Nil()
      Signature:
        { False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
        <#(x,0()) -> c_5()
        <#(0(),S(y)) -> c_6()
        <#(S(x),S(y)) -> c_7(<#(x,y))
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        insert[Ite]#(True(),x,r) -> c_9()
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_4()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        isort#(Nil(),r) -> c_4()
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_5()
        <#(0(),S(y)) -> c_6()
        <#(S(x),S(y)) -> c_7(<#(x,y))
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        insert[Ite]#(True(),x,r) -> c_9()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        {                          
             c_1(insert[Ite]#(<(S(x),x)                
                             ,S(x)                     
                             ,r)                       
                ,<#(S(x),x))                           
        2: inssort#(xs) -> c_2(isort#(xs               
                                     ,Nil()))          
        3: isort#(Cons(x,xs),r) ->                     
             c_3(isort#(xs,insert(x,r))                
                ,insert#(x,r))                         
        4: isort#(Nil(),r) -> c_4()                    
        5: <#(x,0()) -> c_5()                          
        6: <#(0(),S(y)) -> c_6()                       
        7: <#(S(x),S(y)) -> c_7(<#(x,y))               
        8: insert[Ite]#(False()                        
                       ,x'                             
                       ,Cons(x,xs)) -> c_8(insert#(x'  
                                                  ,xs))
        9: insert[Ite]#(True(),x,r) ->                 
             c_9()                                     
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        <#(x,0()) -> c_5()
        <#(0(),S(y)) -> c_6()
        <#(S(x),S(y)) -> c_7(<#(x,y))
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        insert[Ite]#(True(),x,r) -> c_9()
        isort#(Nil(),r) -> c_4()
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
           -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7
           -->_2 <#(S(x),S(y)) -> c_7(<#(x,y)):6
           -->_1 insert[Ite]#(True(),x,r) -> c_9():8
           -->_2 <#(x,0()) -> c_5():4
        
        2:S:inssort#(xs) -> c_2(isort#(xs,Nil()))
           -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
           -->_1 isort#(Nil(),r) -> c_4():9
        
        3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
           -->_1 isort#(Nil(),r) -> c_4():9
           -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
           -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1
        
        4:W:<#(x,0()) -> c_5()
           
        
        5:W:<#(0(),S(y)) -> c_6()
           
        
        6:W:<#(S(x),S(y)) -> c_7(<#(x,y))
           -->_1 <#(S(x),S(y)) -> c_7(<#(x,y)):6
           -->_1 <#(0(),S(y)) -> c_6():5
           -->_1 <#(x,0()) -> c_5():4
        
        7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
           -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1
        
        8:W:insert[Ite]#(True(),x,r) -> c_9()
           
        
        9:W:isort#(Nil(),r) -> c_4()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        9: isort#(Nil(),r) -> c_4()     
        8: insert[Ite]#(True(),x,r) ->  
             c_9()                      
        6: <#(S(x),S(y)) -> c_7(<#(x,y))
        4: <#(x,0()) -> c_5()           
        5: <#(0(),S(y)) -> c_6()        
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x))
           -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7
        
        2:S:inssort#(xs) -> c_2(isort#(xs,Nil()))
           -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
        
        3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
           -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
           -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1
        
        7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
           -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
        inssort#(xs) -> c_2(isort#(xs,Nil()))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1(insert[Ite]#(<(S(x),x),S(x),r))
         -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):4
      
      2:S:inssort#(xs) -> c_2(isort#(xs,Nil()))
         -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
      
      3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
         -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
         -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1
      
      4:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
         -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(2,inssort#(xs) -> c_2(isort#(xs,Nil())))]
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
        isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
      Strict TRS Rules:
        
      Weak DP Rules:
        insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
      Weak TRS Rules:
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
        insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
        insert[Ite](True(),x,r) -> Cons(x,r)
      Signature:
        { c_1(insert[Ite]#(<(S(x),x),S(x),r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
          isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_3(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
          insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_1(insert[Ite]#(<(S(x),x),S(x),r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
          isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          {          
               c_1(insert[Ite]#(<(S(x),x)
                               ,S(x)     
                               ,r))      
          
        Consider the set of all dependency pairs
          1: insert#(S(x),r) ->                          
               c_1(insert[Ite]#(<(S(x),x)                
                               ,S(x)                     
                               ,r))                      
          3: isort#(Cons(x,xs),r) ->                     
               c_3(isort#(xs,insert(x,r))                
                  ,insert#(x,r))                         
          4: insert[Ite]#(False()                        
                         ,x'                             
                         ,Cons(x,xs)) -> c_8(insert#(x'  
                                                    ,xs))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
          Strict TRS Rules:
            
          Weak DP Rules:
            insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { 2*r                       
                          = c_1(insert[Ite]#(<(S(x),x)
                                            ,S(x)     
                                            ,r))      
          
          
          Following rules are (at-least) weakly oriented:
              insert[Ite]#(False() =  2 + 2*x' + 2*x'*xs + 2*xs       
                               ,x'                                    
                      ,Cons(x,xs))                                    
                                   >= 1 + 2*xs                        
                                   =  c_8(insert#(x',xs))             
          
              isort#(Cons(x,xs),r) =  6 + 2*r + 2*r*xs + 6*xs + 2*xs^2
                                   >= 3 + 2*r + 2*r*xs + 6*xs + 2*xs^2
                                   =  c_3(isort#(xs,insert(x,r))      
                                         ,insert#(x,r))               
          
                    insert(S(x),r) =  2 + r                           
                                   >= 2 + r                           
                                   =  insert[Ite](<(S(x),x),S(x),r)   
          
               insert[Ite](False() =  3 + xs                          
                               ,x'                                    
                      ,Cons(x,xs))                                    
                                   >= 3 + xs                          
                                   =  Cons(x,insert(x',xs))           
          
           insert[Ite](True(),x,r) =  2 + r                           
                                   >= 1 + r                           
                                   =  Cons(x,r)                       
          
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
            insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_1(insert[Ite]#(<(S(x),x),S(x),r))
            insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
            isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_1(insert[Ite]#(<(S(x),x),S(x),r))
               -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):2
            
            2:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
               -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1
            
            3:W:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
               -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3
               -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            3: isort#(Cons(x,xs),r) ->                     
                 c_3(isort#(xs,insert(x,r))                
                    ,insert#(x,r))                         
            1: insert#(S(x),r) ->                          
                 c_1(insert[Ite]#(<(S(x),x)                
                                 ,S(x)                     
                                 ,r))                      
            2: insert[Ite]#(False()                        
                           ,x'                             
                           ,Cons(x,xs)) -> c_8(insert#(x'  
                                                      ,xs))
    *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_3(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
          insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_3(isort#(xs,insert(x,r)),insert#(x,r))
             -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2
             -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1
          
          2:W:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r))
             -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):3
          
          3:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs))
             -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: insert#(S(x),r) ->                          
               c_1(insert[Ite]#(<(S(x),x)                
                               ,S(x)                     
                               ,r))                      
          3: insert[Ite]#(False()                        
                         ,x'                             
                         ,Cons(x,xs)) -> c_8(insert#(x'  
                                                    ,xs))
  *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          { c_3(isort#(xs,insert(x,r)),insert#(x,r))
             -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)))
  *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
          insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
          insert[Ite](True(),x,r) -> Cons(x,r)
        Signature:
          {      
               c_3(isort#(xs,insert(x,r)))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { [8] xs + [12]              
                               = c_3(isort#(xs,insert(x,r)))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_3(isort#(xs,insert(x,r)))
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            { c_3(isort#(xs,insert(x,r)))
               -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: isort#(Cons(x,xs),r) ->      
                 c_3(isort#(xs,insert(x,r)))
    *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r)
            insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs))
            insert[Ite](True(),x,r) -> Cons(x,r)
          Signature:
            {