0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 858 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 34 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^1, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0, x2) → x2
f(x1, 0) → g(x1, 0)
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0', x2) → x2
f(x1, 0') → g(x1, 0')
They will be analysed ascendingly in the following order:
g < f
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
Induction Base:
g(gen_S:0'2_0(0), gen_S:0'2_0(b)) →RΩ(1)
gen_S:0'2_0(b)
Induction Step:
g(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(b)) →RΩ(1)
g(gen_S:0'2_0(n4_0), S(gen_S:0'2_0(b))) →IH
gen_S:0'2_0(+(+(b, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
Induction Base:
f(gen_S:0'2_0(a), gen_S:0'2_0(0)) →RΩ(1)
g(gen_S:0'2_0(a), 0') →LΩ(1 + a)
gen_S:0'2_0(+(a, 0))
Induction Step:
f(gen_S:0'2_0(a), gen_S:0'2_0(+(n431_0, 1))) →RΩ(1)
f(S(gen_S:0'2_0(a)), gen_S:0'2_0(n431_0)) →IH
gen_S:0'2_0(+(+(a, 1), c432_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_S:0'2_0(a), gen_S:0'2_0(n431_0)) → gen_S:0'2_0(+(n431_0, a)), rt ∈ Ω(1 + a + n4310)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_S:0'2_0(a), gen_S:0'2_0(n431_0)) → gen_S:0'2_0(+(n431_0, a)), rt ∈ Ω(1 + a + n4310)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.