(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0, x2) → x2
f(x1, 0) → g(x1, 0)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(S(x), y) →+ g(x, S(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / S(x)].
The result substitution is [y / S(y)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0', x2) → x2
f(x1, 0') → g(x1, 0')
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0', x2) → x2
f(x1, 0') → g(x1, 0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
fThey will be analysed ascendingly in the following order:
g < f
(8) Obligation:
Innermost TRS:
Rules:
g(
S(
x),
y) →
g(
x,
S(
y))
f(
y,
S(
x)) →
f(
S(
y),
x)
g(
0',
x2) →
x2f(
x1,
0') →
g(
x1,
0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_S:0'2_0(
n4_0),
gen_S:0'2_0(
b)) →
gen_S:0'2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
g(gen_S:0'2_0(0), gen_S:0'2_0(b)) →RΩ(1)
gen_S:0'2_0(b)
Induction Step:
g(gen_S:0'2_0(+(n4_0, 1)), gen_S:0'2_0(b)) →RΩ(1)
g(gen_S:0'2_0(n4_0), S(gen_S:0'2_0(b))) →IH
gen_S:0'2_0(+(+(b, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
g(
S(
x),
y) →
g(
x,
S(
y))
f(
y,
S(
x)) →
f(
S(
y),
x)
g(
0',
x2) →
x2f(
x1,
0') →
g(
x1,
0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_S:0'2_0(
a),
gen_S:0'2_0(
n431_0)) →
gen_S:0'2_0(
+(
n431_0,
a)), rt ∈ Ω(1 + a + n431
0)
Induction Base:
f(gen_S:0'2_0(a), gen_S:0'2_0(0)) →RΩ(1)
g(gen_S:0'2_0(a), 0') →LΩ(1 + a)
gen_S:0'2_0(+(a, 0))
Induction Step:
f(gen_S:0'2_0(a), gen_S:0'2_0(+(n431_0, 1))) →RΩ(1)
f(S(gen_S:0'2_0(a)), gen_S:0'2_0(n431_0)) →IH
gen_S:0'2_0(+(+(a, 1), c432_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
g(
S(
x),
y) →
g(
x,
S(
y))
f(
y,
S(
x)) →
f(
S(
y),
x)
g(
0',
x2) →
x2f(
x1,
0') →
g(
x1,
0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_S:0'2_0(a), gen_S:0'2_0(n431_0)) → gen_S:0'2_0(+(n431_0, a)), rt ∈ Ω(1 + a + n4310)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
g(
S(
x),
y) →
g(
x,
S(
y))
f(
y,
S(
x)) →
f(
S(
y),
x)
g(
0',
x2) →
x2f(
x1,
0') →
g(
x1,
0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_S:0'2_0(a), gen_S:0'2_0(n431_0)) → gen_S:0'2_0(+(n431_0, a)), rt ∈ Ω(1 + a + n4310)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
g(
S(
x),
y) →
g(
x,
S(
y))
f(
y,
S(
x)) →
f(
S(
y),
x)
g(
0',
x2) →
x2f(
x1,
0') →
g(
x1,
0')
Types:
g :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
f :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_S:0'2_0(n4_0), gen_S:0'2_0(b)) → gen_S:0'2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(22) BOUNDS(n^1, INF)