(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
eq0(S(x'), S(x)) → eq0(x', x)
eq0(S(x), 0) → 0
eq0(0, S(x)) → 0
eq0(0, 0) → S(0)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
eq0(S(x'), S(x)) → eq0(x', x)
eq0(S(x), 0') → 0'
eq0(0', S(x)) → 0'
eq0(0', 0') → S(0')
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
eq0(S(x'), S(x)) → eq0(x', x)
eq0(S(x), 0') → 0'
eq0(0', S(x)) → 0'
eq0(0', 0') → S(0')
Types:
eq0 :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
eq0
(6) Obligation:
Innermost TRS:
Rules:
eq0(
S(
x'),
S(
x)) →
eq0(
x',
x)
eq0(
S(
x),
0') →
0'eq0(
0',
S(
x)) →
0'eq0(
0',
0') →
S(
0')
Types:
eq0 :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'
Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))
The following defined symbols remain to be analysed:
eq0
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq0(
gen_S:0'2_1(
+(
1,
n4_1)),
gen_S:0'2_1(
n4_1)) →
gen_S:0'2_1(
0), rt ∈ Ω(1 + n4
1)
Induction Base:
eq0(gen_S:0'2_1(+(1, 0)), gen_S:0'2_1(0)) →RΩ(1)
0'
Induction Step:
eq0(gen_S:0'2_1(+(1, +(n4_1, 1))), gen_S:0'2_1(+(n4_1, 1))) →RΩ(1)
eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) →IH
gen_S:0'2_1(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
eq0(
S(
x'),
S(
x)) →
eq0(
x',
x)
eq0(
S(
x),
0') →
0'eq0(
0',
S(
x)) →
0'eq0(
0',
0') →
S(
0')
Types:
eq0 :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'
Lemmas:
eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(0), rt ∈ Ω(1 + n41)
Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(0), rt ∈ Ω(1 + n41)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
eq0(
S(
x'),
S(
x)) →
eq0(
x',
x)
eq0(
S(
x),
0') →
0'eq0(
0',
S(
x)) →
0'eq0(
0',
0') →
S(
0')
Types:
eq0 :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'
Lemmas:
eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(0), rt ∈ Ω(1 + n41)
Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(0), rt ∈ Ω(1 + n41)
(14) BOUNDS(n^1, INF)