(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
div2(S(S(x))) → +(S(0), div2(x))
div2(S(0)) → 0
div2(0) → 0
The (relative) TRS S consists of the following rules:
+(x, S(0)) → S(x)
+(S(0), y) → S(y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
div2(S(S(z0))) → +(S(0), div2(z0))
div2(S(0)) → 0
div2(0) → 0
Tuples:
+'(z0, S(0)) → c
+'(S(0), z0) → c1
DIV2(S(S(z0))) → c2(+'(S(0), div2(z0)), DIV2(z0))
DIV2(S(0)) → c3
DIV2(0) → c4
S tuples:
DIV2(S(S(z0))) → c2(+'(S(0), div2(z0)), DIV2(z0))
DIV2(S(0)) → c3
DIV2(0) → c4
K tuples:none
Defined Rule Symbols:
div2, +
Defined Pair Symbols:
+', DIV2
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
+'(S(0), z0) → c1
DIV2(0) → c4
DIV2(S(0)) → c3
+'(z0, S(0)) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
div2(S(S(z0))) → +(S(0), div2(z0))
div2(S(0)) → 0
div2(0) → 0
Tuples:
DIV2(S(S(z0))) → c2(+'(S(0), div2(z0)), DIV2(z0))
S tuples:
DIV2(S(S(z0))) → c2(+'(S(0), div2(z0)), DIV2(z0))
K tuples:none
Defined Rule Symbols:
div2, +
Defined Pair Symbols:
DIV2
Compound Symbols:
c2
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
div2(S(S(z0))) → +(S(0), div2(z0))
div2(S(0)) → 0
div2(0) → 0
Tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
S tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
K tuples:none
Defined Rule Symbols:
div2, +
Defined Pair Symbols:
DIV2
Compound Symbols:
c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
div2(S(S(z0))) → +(S(0), div2(z0))
div2(S(0)) → 0
div2(0) → 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
S tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
DIV2
Compound Symbols:
c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV2(S(S(z0))) → c2(DIV2(z0))
We considered the (Usable) Rules:none
And the Tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(DIV2(x1)) = [4]x1
POL(S(x1)) = [1] + x1
POL(c2(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
S tuples:none
K tuples:
DIV2(S(S(z0))) → c2(DIV2(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
DIV2
Compound Symbols:
c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)