*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        bsort(0(),xs) -> xs
        bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubblesort(xs) -> bsort(len(xs),xs)
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
      Signature:
        {+/2, c_1()
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        len#(Nil()) -> c_7()
      Weak DPs
        +#(x,S(0())) -> c_8()
        +#(S(0()),y) -> c_9()
        <#(x,0()) -> c_10()
        <#(0(),S(y)) -> c_11()
        <#(S(x),S(y)) -> c_12(<#(x,y))
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        bsort#(0(),xs) -> c_1()
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        len#(Nil()) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,S(0())) -> c_8()
        +#(S(0()),y) -> c_9()
        <#(x,0()) -> c_10()
        <#(0(),S(y)) -> c_11()
        <#(S(x),S(y)) -> c_12(<#(x,y))
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bsort(0(),xs) -> xs
        bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        bubblesort(xs) -> bsort(len(xs),xs)
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Signature:
        {+/2, S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
        +#(x,S(0())) -> c_8()
        +#(S(0()),y) -> c_9()
        <#(x,0()) -> c_10()
        <#(0(),S(y)) -> c_11()
        <#(S(x),S(y)) -> c_12(<#(x,y))
        bsort#(0(),xs) -> c_1()
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        len#(Nil()) -> c_7()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        bsort#(0(),xs) -> c_1()
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        len#(Nil()) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,S(0())) -> c_8()
        +#(S(0()),y) -> c_9()
        <#(x,0()) -> c_10()
        <#(0(),S(y)) -> c_11()
        <#(S(x),S(y)) -> c_12(<#(x,y))
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Signature:
        {+/2, c_1()                                  
        2:  bsort#(S(x'),Cons(x,xs)) ->                              
              c_2(bsort#(x',bubble(x,xs))                            
                 ,bubble#(x,xs))                                     
        3:  bubble#(x,Nil()) -> c_3()                                
        4:  bubble#(x',Cons(x,xs)) ->                                
              c_4(bubble[Ite][False][Ite]#(<(x'                      
                                            ,x)                      
                                          ,x'                        
                                          ,Cons(x,xs))               
                 ,<#(x',x))                                          
        5:  bubblesort#(xs) ->                                       
              c_5(bsort#(len(xs),xs),len#(xs))                       
        6:  len#(Cons(x,xs)) ->                                      
              c_6(+#(S(0()),len(xs)),len#(xs))                       
        7:  len#(Nil()) -> c_7()                                     
        8:  +#(x,S(0())) -> c_8()                                    
        9:  +#(S(0()),y) -> c_9()                                    
        10: <#(x,0()) -> c_10()                                      
        11: <#(0(),S(y)) -> c_11()                                   
        12: <#(S(x),S(y)) -> c_12(<#(x,y))                           
        13: bubble[Ite][False][Ite]#(False()                         
                                    ,x'                              
                                    ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                ,xs))
        14: bubble[Ite][False][Ite]#(True()                          
                                    ,x'                              
                                    ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                ,xs))
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,S(0())) -> c_8()
        +#(S(0()),y) -> c_9()
        <#(x,0()) -> c_10()
        <#(0(),S(y)) -> c_11()
        <#(S(x),S(y)) -> c_12(<#(x,y))
        bsort#(0(),xs) -> c_1()
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        len#(Nil()) -> c_7()
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Signature:
        {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
           -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_1 bsort#(0(),xs) -> c_1():11
           -->_2 bubble#(x,Nil()) -> c_3():2
           -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
        
        2:S:bubble#(x,Nil()) -> c_3()
           
        
        3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
           -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
           -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
           -->_2 <#(S(x),S(y)) -> c_12(<#(x,y)):10
           -->_2 <#(0(),S(y)) -> c_11():9
           -->_2 <#(x,0()) -> c_10():8
        
        4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
           -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
           -->_2 len#(Nil()) -> c_7():14
           -->_1 bsort#(0(),xs) -> c_1():11
           -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
        
        5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
           -->_2 len#(Nil()) -> c_7():14
           -->_1 +#(S(0()),y) -> c_9():7
           -->_1 +#(x,S(0())) -> c_8():6
           -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
        
        6:W:+#(x,S(0())) -> c_8()
           
        
        7:W:+#(S(0()),y) -> c_9()
           
        
        8:W:<#(x,0()) -> c_10()
           
        
        9:W:<#(0(),S(y)) -> c_11()
           
        
        10:W:<#(S(x),S(y)) -> c_12(<#(x,y))
           -->_1 <#(S(x),S(y)) -> c_12(<#(x,y)):10
           -->_1 <#(0(),S(y)) -> c_11():9
           -->_1 <#(x,0()) -> c_10():8
        
        11:W:bsort#(0(),xs) -> c_1()
           
        
        12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
           -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_1 bubble#(x,Nil()) -> c_3():2
        
        13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
           -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_1 bubble#(x,Nil()) -> c_3():2
        
        14:W:len#(Nil()) -> c_7()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        6:  +#(x,S(0())) -> c_8()         
        7:  +#(S(0()),y) -> c_9()         
        14: len#(Nil()) -> c_7()          
        11: bsort#(0(),xs) -> c_1()       
        10: <#(S(x),S(y)) -> c_12(<#(x,y))
        8:  <#(x,0()) -> c_10()           
        9:  <#(0(),S(y)) -> c_11()        
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
      Strict TRS Rules:
        
      Weak DP Rules:
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Signature:
        {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
           -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_2 bubble#(x,Nil()) -> c_3():2
           -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
        
        2:S:bubble#(x,Nil()) -> c_3()
           
        
        3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
           -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
           -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
        
        4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
           -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
           -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
        
        5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
           -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
        
        12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
           -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_1 bubble#(x,Nil()) -> c_3():2
        
        13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
           -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
           -->_1 bubble#(x,Nil()) -> c_3():2
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        len#(Cons(x,xs)) -> c_6(len#(xs))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        bubble#(x,Nil()) -> c_3()
        bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        len#(Cons(x,xs)) -> c_6(len#(xs))
      Strict TRS Rules:
        
      Weak DP Rules:
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
        bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
      Weak TRS Rules:
        +(x,S(0())) -> S(x)
        +(S(0()),y) -> S(y)
        <(x,0()) -> False()
        <(0(),S(y)) -> True()
        <(S(x),S(y)) -> <(x,y)
        bubble(x,Nil()) -> Cons(x,Nil())
        bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
        bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        len(Cons(x,xs)) -> +(S(0()),len(xs))
        len(Nil()) -> 0()
      Signature:
        {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        Strict TRS Rules:
          
        Weak DP Rules:
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Strict TRS Rules:
          
        Weak DP Rules:
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        Strict TRS Rules:
          
        Weak DP Rules:
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):5
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          5:W:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):5
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: len#(Cons(x,xs)) ->
               c_6(len#(xs))    
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        Strict TRS Rules:
          
        Weak DP Rules:
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        Strict TRS Rules:
          
        Weak DP Rules:
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2,  
               c_2(bsort#(x',bubble(x,xs))
                  ,bubble#(x,xs))         
          
        Consider the set of all dependency pairs
          1: bsort#(S(x'),Cons(x,xs)) ->                              
               c_2(bsort#(x',bubble(x,xs))                            
                  ,bubble#(x,xs))                                     
          2: bubble#(x,Nil()) -> c_3()                                
          3: bubble#(x',Cons(x,xs)) ->                                
               c_4(bubble[Ite][False][Ite]#(<(x'                      
                                             ,x)                      
                                           ,x'                        
                                           ,Cons(x,xs)))              
          4: bubble[Ite][False][Ite]#(False()                         
                                     ,x'                              
                                     ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                 ,xs))
          5: bubble[Ite][False][Ite]#(True()                          
                                     ,x'                              
                                     ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                 ,xs))
          6: bubblesort#(xs) ->                                       
               c_5(bsort#(len(xs),xs))                                
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          Strict TRS Rules:
            
          Weak DP Rules:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
          Weak TRS Rules:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
          Signature:
            {+/2, [2] x' + [6]               
                                   = c_2(bsort#(x',bubble(x,xs))
                                        ,bubble#(x,xs))         
          
          
          Following rules are (at-least) weakly oriented:
                              bubble#(x,Nil()) =  [0]                                      
                                               >= [0]                                      
                                               =  c_3()                                    
          
                        bubble#(x',Cons(x,xs)) =  [0]                                      
                                               >= [0]                                      
                                               =  c_4(bubble[Ite][False][Ite]#(<(x'        
                                                                                ,x)        
                                                                              ,x'          
                                                                              ,Cons(x,xs)))
          
              bubble[Ite][False][Ite]#(False() =  [0]                                      
                                           ,x'                                             
                                  ,Cons(x,xs))                                             
                                               >= [0]                                      
                                               =  c_13(bubble#(x',xs))                     
          
               bubble[Ite][False][Ite]#(True() =  [0]                                      
                                           ,x'                                             
                                  ,Cons(x,xs))                                             
                                               >= [0]                                      
                                               =  c_14(bubble#(x,xs))                      
          
                               bubblesort#(xs) =  [4] xs + [4]                             
                                               >= [4] xs + [2]                             
                                               =  c_5(bsort#(len(xs),xs))                  
          
                                   +(x,S(0())) =  [1] x + [7]                              
                                               >= [1] x + [4]                              
                                               =  S(x)                                     
          
                                   +(S(0()),y) =  [1] y + [7]                              
                                               >= [1] y + [4]                              
                                               =  S(y)                                     
          
                               len(Cons(x,xs)) =  [2] xs + [9]                             
                                               >= [2] xs + [8]                             
                                               =  +(S(0()),len(xs))                        
          
                                    len(Nil()) =  [1]                                      
                                               >= [0]                                      
                                               =  0()                                      
          
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          Strict TRS Rules:
            
          Weak DP Rules:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
          Weak TRS Rules:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
          Signature:
            {+/2, c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          Strict TRS Rules:
            
          Weak DP Rules:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
          Weak TRS Rules:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
          Signature:
            {+/2, c_3()
            
          Consider the set of all dependency pairs
            1: bubble#(x,Nil()) -> c_3()                                
            2: bubble#(x',Cons(x,xs)) ->                                
                 c_4(bubble[Ite][False][Ite]#(<(x'                      
                                               ,x)                      
                                             ,x'                        
                                             ,Cons(x,xs)))              
            3: bsort#(S(x'),Cons(x,xs)) ->                              
                 c_2(bsort#(x',bubble(x,xs))                            
                    ,bubble#(x,xs))                                     
            4: bubble[Ite][False][Ite]#(False()                         
                                       ,x'                              
                                       ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                   ,xs))
            5: bubble[Ite][False][Ite]#(True()                          
                                       ,x'                              
                                       ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                   ,xs))
            6: bubblesort#(xs) ->                                       
                 c_5(bsort#(len(xs),xs))                                
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {1}
          These cover all (indirect) predecessors of dependency pairs
            {1,6}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              bubble#(x,Nil()) -> c_3()
              bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            Strict TRS Rules:
              
            Weak DP Rules:
              bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
              bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
            Weak TRS Rules:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
            Signature:
              {+/2, [0]  
                             = c_3()
            
            
            Following rules are (at-least) weakly oriented:
                        bsort#(S(x'),Cons(x,xs)) =  [4] x' + [9]                             
                                                 >= [4] x' + [9]                             
                                                 =  c_2(bsort#(x',bubble(x,xs))              
                                                       ,bubble#(x,xs))                       
            
                          bubble#(x',Cons(x,xs)) =  [2]                                      
                                                 >= [2]                                      
                                                 =  c_4(bubble[Ite][False][Ite]#(<(x'        
                                                                                  ,x)        
                                                                                ,x'          
                                                                                ,Cons(x,xs)))
            
                bubble[Ite][False][Ite]#(False() =  [2]                                      
                                             ,x'                                             
                                    ,Cons(x,xs))                                             
                                                 >= [2]                                      
                                                 =  c_13(bubble#(x',xs))                     
            
                 bubble[Ite][False][Ite]#(True() =  [2]                                      
                                             ,x'                                             
                                    ,Cons(x,xs))                                             
                                                 >= [2]                                      
                                                 =  c_14(bubble#(x,xs))                      
            
                                 bubblesort#(xs) =  [4] xs + [2]                             
                                                 >= [4] xs + [2]                             
                                                 =  c_5(bsort#(len(xs),xs))                  
            
                                     +(x,S(0())) =  [2] x + [2]                              
                                                 >= [1] x + [2]                              
                                                 =  S(x)                                     
            
                                     +(S(0()),y) =  [1] y + [4]                              
                                                 >= [1] y + [2]                              
                                                 =  S(y)                                     
            
                                        <(x,0()) =  [0]                                      
                                                 >= [0]                                      
                                                 =  False()                                  
            
                                     <(0(),S(y)) =  [0]                                      
                                                 >= [0]                                      
                                                 =  True()                                   
            
                                    <(S(x),S(y)) =  [0]                                      
                                                 >= [0]                                      
                                                 =  <(x,y)                                   
            
                                 len(Cons(x,xs)) =  [1] xs + [4]                             
                                                 >= [1] xs + [4]                             
                                                 =  +(S(0()),len(xs))                        
            
                                      len(Nil()) =  [0]                                      
                                                 >= [0]                                      
                                                 =  0()                                      
            
      *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            Strict TRS Rules:
              
            Weak DP Rules:
              bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble#(x,Nil()) -> c_3()
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
              bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
            Weak TRS Rules:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
            Signature:
              {+/2, c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            Strict TRS Rules:
              
            Weak DP Rules:
              bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble#(x,Nil()) -> c_3()
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
              bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
            Weak TRS Rules:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
            Signature:
              {+/2, c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
                 -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):5
                 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):4
              
              2:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
                 -->_2 bubble#(x,Nil()) -> c_3():3
                 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
                 -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
              
              3:W:bubble#(x,Nil()) -> c_3()
                 
              
              4:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
                 -->_1 bubble#(x,Nil()) -> c_3():3
                 -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
              
              5:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
                 -->_1 bubble#(x,Nil()) -> c_3():3
                 -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
              
              6:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
                 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              3: bubble#(x,Nil()) -> c_3()
      *** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            Strict TRS Rules:
              
            Weak DP Rules:
              bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
              bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
            Weak TRS Rules:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
            Signature:
              {+/2,                  
                   c_4(bubble[Ite][False][Ite]#(<(x'        
                                                 ,x)        
                                               ,x'          
                                               ,Cons(x,xs)))
              
            Consider the set of all dependency pairs
              1: bubble#(x',Cons(x,xs)) ->                                
                   c_4(bubble[Ite][False][Ite]#(<(x'                      
                                                 ,x)                      
                                               ,x'                        
                                               ,Cons(x,xs)))              
              2: bsort#(S(x'),Cons(x,xs)) ->                              
                   c_2(bsort#(x',bubble(x,xs))                            
                      ,bubble#(x,xs))                                     
              4: bubble[Ite][False][Ite]#(False()                         
                                         ,x'                              
                                         ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                     ,xs))
              5: bubble[Ite][False][Ite]#(True()                          
                                         ,x'                              
                                         ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                     ,xs))
              6: bubblesort#(xs) ->                                       
                   c_5(bsort#(len(xs),xs))                                
            Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
            SPACE(?,?)on application of the dependency pairs
              {1}
            These cover all (indirect) predecessors of dependency pairs
              {1,4,5,6}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
              Strict TRS Rules:
                
              Weak DP Rules:
                bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
                bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
                bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
                bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
              Weak TRS Rules:
                +(x,S(0())) -> S(x)
                +(S(0()),y) -> S(y)
                <(x,0()) -> False()
                <(0(),S(y)) -> True()
                <(S(x),S(y)) -> <(x,y)
                bubble(x,Nil()) -> Cons(x,Nil())
                bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
                bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
                bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
                len(Cons(x,xs)) -> +(S(0()),len(xs))
                len(Nil()) -> 0()
              Signature:
                {+/2, 2 + 2*x + x' + 2*xs                      
                                     = c_4(bubble[Ite][False][Ite]#(<(x'        
                                                                     ,x)        
                                                                   ,x'          
                                                                   ,Cons(x,xs)))
              
              
              Following rules are (at-least) weakly oriented:
                          bsort#(S(x'),Cons(x,xs)) =  6 + 4*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs
                                                   >= 6 + 3*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs
                                                   =  c_2(bsort#(x',bubble(x,xs))             
                                                         ,bubble#(x,xs))                      
              
                  bubble[Ite][False][Ite]#(False() =  2 + 2*x + x' + 2*xs                     
                                               ,x'                                            
                                      ,Cons(x,xs))                                            
                                                   >= 2 + x' + 2*xs                           
                                                   =  c_13(bubble#(x',xs))                    
              
                   bubble[Ite][False][Ite]#(True() =  2 + 2*x + x' + 2*xs                     
                                               ,x'                                            
                                      ,Cons(x,xs))                                            
                                                   >= 2 + x + 2*xs                            
                                                   =  c_14(bubble#(x,xs))                     
              
                                   bubblesort#(xs) =  2 + 2*xs + 3*xs^2                       
                                                   >= 2 + 2*xs + 2*xs^2                       
                                                   =  c_5(bsort#(len(xs),xs))                 
              
                                       +(x,S(0())) =  1 + x                                   
                                                   >= 1 + x                                   
                                                   =  S(x)                                    
              
                                       +(S(0()),y) =  1 + y                                   
                                                   >= 1 + y                                   
                                                   =  S(y)                                    
              
                                          <(x,0()) =  1                                       
                                                   >= 1                                       
                                                   =  False()                                 
              
                                       <(0(),S(y)) =  1                                       
                                                   >= 1                                       
                                                   =  True()                                  
              
                                      <(S(x),S(y)) =  1                                       
                                                   >= 1                                       
                                                   =  <(x,y)                                  
              
                                   bubble(x,Nil()) =  1 + x                                   
                                                   >= 1 + x                                   
                                                   =  Cons(x,Nil())                           
              
                             bubble(x',Cons(x,xs)) =  2 + x + x' + xs                         
                                                   >= 2 + x + x' + xs                         
                                                   =  bubble[Ite][False][Ite](<(x',x)         
                                                                             ,x'              
                                                                             ,Cons(x,xs))     
              
                   bubble[Ite][False][Ite](False() =  2 + x + x' + xs                         
                                               ,x'                                            
                                      ,Cons(x,xs))                                            
                                                   >= 2 + x + x' + xs                         
                                                   =  Cons(x,bubble(x',xs))                   
              
                    bubble[Ite][False][Ite](True() =  2 + x + x' + xs                         
                                               ,x'                                            
                                      ,Cons(x,xs))                                            
                                                   >= 2 + x + x' + xs                         
                                                   =  Cons(x',bubble(x,xs))                   
              
                                   len(Cons(x,xs)) =  1 + x + xs                              
                                                   >= 1 + xs                                  
                                                   =  +(S(0()),len(xs))                       
              
                                        len(Nil()) =  0                                       
                                                   >= 0                                       
                                                   =  0()                                     
              
        *** 1.1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
                bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
                bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
                bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
                bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
              Weak TRS Rules:
                +(x,S(0())) -> S(x)
                +(S(0()),y) -> S(y)
                <(x,0()) -> False()
                <(0(),S(y)) -> True()
                <(S(x),S(y)) -> <(x,y)
                bubble(x,Nil()) -> Cons(x,Nil())
                bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
                bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
                bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
                len(Cons(x,xs)) -> +(S(0()),len(xs))
                len(Nil()) -> 0()
              Signature:
                {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
                bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
                bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
                bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
                bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
              Weak TRS Rules:
                +(x,S(0())) -> S(x)
                +(S(0()),y) -> S(y)
                <(x,0()) -> False()
                <(0(),S(y)) -> True()
                <(S(x),S(y)) -> <(x,y)
                bubble(x,Nil()) -> Cons(x,Nil())
                bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
                bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
                bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
                len(Cons(x,xs)) -> +(S(0()),len(xs))
                len(Nil()) -> 0()
              Signature:
                {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
                   -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
                   -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
                
                2:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
                   -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):4
                   -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):3
                
                3:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
                   -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
                
                4:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
                   -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
                
                5:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
                   -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                5: bubblesort#(xs) ->                                       
                     c_5(bsort#(len(xs),xs))                                
                1: bsort#(S(x'),Cons(x,xs)) ->                              
                     c_2(bsort#(x',bubble(x,xs))                            
                        ,bubble#(x,xs))                                     
                2: bubble#(x',Cons(x,xs)) ->                                
                     c_4(bubble[Ite][False][Ite]#(<(x'                      
                                                   ,x)                      
                                                 ,x'                        
                                                 ,Cons(x,xs)))              
                4: bubble[Ite][False][Ite]#(True()                          
                                           ,x'                              
                                           ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                       ,xs))
                3: bubble[Ite][False][Ite]#(False()                         
                                           ,x'                              
                                           ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                       ,xs))
        *** 1.1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                +(x,S(0())) -> S(x)
                +(S(0()),y) -> S(y)
                <(x,0()) -> False()
                <(0(),S(y)) -> True()
                <(S(x),S(y)) -> <(x,y)
                bubble(x,Nil()) -> Cons(x,Nil())
                bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
                bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
                bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
                len(Cons(x,xs)) -> +(S(0()),len(xs))
                len(Nil()) -> 0()
              Signature:
                {+/2, c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Strict TRS Rules:
          
        Weak DP Rules:
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_5(bsort#(len(xs),xs),len#(xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          3:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_2 bubble#(x,Nil()) -> c_3():4
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
          
          4:W:bubble#(x,Nil()) -> c_3()
             
          
          5:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_1 bubble#(x,Nil()) -> c_3():4
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_1 bubble#(x,Nil()) -> c_3():4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: bsort#(S(x'),Cons(x,xs)) ->                              
               c_2(bsort#(x',bubble(x,xs))                            
                  ,bubble#(x,xs))                                     
          5: bubble#(x',Cons(x,xs)) ->                                
               c_4(bubble[Ite][False][Ite]#(<(x'                      
                                             ,x)                      
                                           ,x'                        
                                           ,Cons(x,xs)))              
          7: bubble[Ite][False][Ite]#(True()                          
                                     ,x'                              
                                     ,Cons(x,xs)) -> c_14(bubble#(x   
                                                                 ,xs))
          6: bubble[Ite][False][Ite]#(False()                         
                                     ,x'                              
                                     ,Cons(x,xs)) -> c_13(bubble#(x'  
                                                                 ,xs))
          4: bubble#(x,Nil()) -> c_3()                                
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_5(bsort#(len(xs),xs),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bubblesort#(xs) -> c_5(len#(xs))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          bubblesort#(xs) -> c_5(len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,S(0())) -> S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
        Signature:
          {+/2, c_5(len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
  *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          bubblesort#(xs) -> c_5(len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {+/2, c_5(len#(xs))
          2: len#(Cons(x,xs)) ->             
               c_6(len#(xs))                 
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {+/2, [6] xs + [14]        
                           = c_5(len#(xs))        
          
          len#(Cons(x,xs)) = [3] x + [3] xs + [31]
                           > [3] xs + [7]         
                           = c_6(len#(xs))        
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
          Weak TRS Rules:
            
          Signature:
            {+/2, c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
          Weak TRS Rules:
            
          Signature:
            {+/2, c_5(len#(xs))
               -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
            
            2:W:len#(Cons(x,xs)) -> c_6(len#(xs))
               -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: bubblesort#(xs) -> c_5(len#(xs))
            2: len#(Cons(x,xs)) ->             
                 c_6(len#(xs))                 
    *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {+/2,