*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: bsort(0(),xs) -> xs bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs)) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubblesort(xs) -> bsort(len(xs),xs) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Weak DP Rules: Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} Obligation: Innermost basic terms: {+,<,bsort,bubble,bubble[Ite][False][Ite],bubblesort,len}/{0,Cons,False,Nil,S,True} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs bsort#(0(),xs) -> c_1() bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) len#(Nil()) -> c_7() Weak DPs +#(x,S(0())) -> c_8() +#(S(0()),y) -> c_9() <#(x,0()) -> c_10() <#(0(),S(y)) -> c_11() <#(S(x),S(y)) -> c_12(<#(x,y)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(0(),xs) -> c_1() bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) len#(Nil()) -> c_7() Strict TRS Rules: Weak DP Rules: +#(x,S(0())) -> c_8() +#(S(0()),y) -> c_9() <#(x,0()) -> c_10() <#(0(),S(y)) -> c_11() <#(S(x),S(y)) -> c_12(<#(x,y)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bsort(0(),xs) -> xs bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs)) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) bubblesort(xs) -> bsort(len(xs),xs) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() +#(x,S(0())) -> c_8() +#(S(0()),y) -> c_9() <#(x,0()) -> c_10() <#(0(),S(y)) -> c_11() <#(S(x),S(y)) -> c_12(<#(x,y)) bsort#(0(),xs) -> c_1() bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) len#(Nil()) -> c_7() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(0(),xs) -> c_1() bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) len#(Nil()) -> c_7() Strict TRS Rules: Weak DP Rules: +#(x,S(0())) -> c_8() +#(S(0()),y) -> c_9() <#(x,0()) -> c_10() <#(0(),S(y)) -> c_11() <#(S(x),S(y)) -> c_12(<#(x,y)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,7} by application of Pre({1,7}) = {2,5,6}. Here rules are labelled as follows: 1: bsort#(0(),xs) -> c_1() 2: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 3: bubble#(x,Nil()) -> c_3() 4: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs)) ,<#(x',x)) 5: bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) 6: len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) 7: len#(Nil()) -> c_7() 8: +#(x,S(0())) -> c_8() 9: +#(S(0()),y) -> c_9() 10: <#(x,0()) -> c_10() 11: <#(0(),S(y)) -> c_11() 12: <#(S(x),S(y)) -> c_12(<#(x,y)) 13: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) 14: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) Strict TRS Rules: Weak DP Rules: +#(x,S(0())) -> c_8() +#(S(0()),y) -> c_9() <#(x,0()) -> c_10() <#(0(),S(y)) -> c_11() <#(S(x),S(y)) -> c_12(<#(x,y)) bsort#(0(),xs) -> c_1() bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) len#(Nil()) -> c_7() Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_1 bsort#(0(),xs) -> c_1():11 -->_2 bubble#(x,Nil()) -> c_3():2 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 2:S:bubble#(x,Nil()) -> c_3() 3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12 -->_2 <#(S(x),S(y)) -> c_12(<#(x,y)):10 -->_2 <#(0(),S(y)) -> c_11():9 -->_2 <#(x,0()) -> c_10():8 4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5 -->_2 len#(Nil()) -> c_7():14 -->_1 bsort#(0(),xs) -> c_1():11 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) -->_2 len#(Nil()) -> c_7():14 -->_1 +#(S(0()),y) -> c_9():7 -->_1 +#(x,S(0())) -> c_8():6 -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5 6:W:+#(x,S(0())) -> c_8() 7:W:+#(S(0()),y) -> c_9() 8:W:<#(x,0()) -> c_10() 9:W:<#(0(),S(y)) -> c_11() 10:W:<#(S(x),S(y)) -> c_12(<#(x,y)) -->_1 <#(S(x),S(y)) -> c_12(<#(x,y)):10 -->_1 <#(0(),S(y)) -> c_11():9 -->_1 <#(x,0()) -> c_10():8 11:W:bsort#(0(),xs) -> c_1() 12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_1 bubble#(x,Nil()) -> c_3():2 13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_1 bubble#(x,Nil()) -> c_3():2 14:W:len#(Nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: +#(x,S(0())) -> c_8() 7: +#(S(0()),y) -> c_9() 14: len#(Nil()) -> c_7() 11: bsort#(0(),xs) -> c_1() 10: <#(S(x),S(y)) -> c_12(<#(x,y)) 8: <#(x,0()) -> c_10() 9: <#(0(),S(y)) -> c_11() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_2 bubble#(x,Nil()) -> c_3():2 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 2:S:bubble#(x,Nil()) -> c_3() 3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12 4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)) -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5 12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_1 bubble#(x,Nil()) -> c_3():2 13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3 -->_1 bubble#(x,Nil()) -> c_3():2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) len#(Cons(x,xs)) -> c_6(len#(xs)) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Problem (S) Strict DP Rules: bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_2 bubble#(x,Nil()) -> c_3():2 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 2:S:bubble#(x,Nil()) -> c_3() 3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6 4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):5 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 5:W:len#(Cons(x,xs)) -> c_6(len#(xs)) -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):5 6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_1 bubble#(x,Nil()) -> c_3():2 7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_1 bubble#(x,Nil()) -> c_3():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: len#(Cons(x,xs)) -> c_6(len#(xs)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_2 bubble#(x,Nil()) -> c_3():2 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 2:S:bubble#(x,Nil()) -> c_3() 3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6 4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_1 bubble#(x,Nil()) -> c_3():2 7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3 -->_1 bubble#(x,Nil()) -> c_3():2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) Consider the set of all dependency pairs 1: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 2: bubble#(x,Nil()) -> c_3() 3: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) 4: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) 5: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) 6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1} Following symbols are considered usable: {+,len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#} TcT has computed the following interpretation: p(+) = [1] x1 + [1] x2 + [3] p(0) = [0] p(<) = [3] x2 + [0] p(Cons) = [1] x2 + [4] p(False) = [2] p(Nil) = [0] p(S) = [1] x1 + [4] p(True) = [0] p(bsort) = [1] x1 + [4] x2 + [1] p(bubble) = [0] p(bubble[Ite][False][Ite]) = [4] x1 + [1] x2 + [2] p(bubblesort) = [1] p(len) = [2] x1 + [1] p(+#) = [1] x1 + [0] p(<#) = [1] x1 + [1] p(bsort#) = [2] x1 + [0] p(bubble#) = [0] p(bubble[Ite][False][Ite]#) = [0] p(bubblesort#) = [4] x1 + [4] p(len#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [4] x2 + [6] p(c_3) = [0] p(c_4) = [4] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [4] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [1] x1 + [0] p(c_13) = [1] x1 + [0] p(c_14) = [4] x1 + [0] Following rules are strictly oriented: bsort#(S(x'),Cons(x,xs)) = [2] x' + [8] > [2] x' + [6] = c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) Following rules are (at-least) weakly oriented: bubble#(x,Nil()) = [0] >= [0] = c_3() bubble#(x',Cons(x,xs)) = [0] >= [0] = c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) bubble[Ite][False][Ite]#(False() = [0] ,x' ,Cons(x,xs)) >= [0] = c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True() = [0] ,x' ,Cons(x,xs)) >= [0] = c_14(bubble#(x,xs)) bubblesort#(xs) = [4] xs + [4] >= [4] xs + [2] = c_5(bsort#(len(xs),xs)) +(x,S(0())) = [1] x + [7] >= [1] x + [4] = S(x) +(S(0()),y) = [1] y + [7] >= [1] y + [4] = S(y) len(Cons(x,xs)) = [2] xs + [9] >= [2] xs + [8] = +(S(0()),len(xs)) len(Nil()) = [1] >= [0] = 0() *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: bubble#(x,Nil()) -> c_3() Consider the set of all dependency pairs 1: bubble#(x,Nil()) -> c_3() 2: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) 3: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 4: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) 5: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) 6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1} Following symbols are considered usable: {+,<,len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#} TcT has computed the following interpretation: p(+) = [2] x1 + [1] x2 + [0] p(0) = [0] p(<) = [0] p(Cons) = [1] x2 + [4] p(False) = [0] p(Nil) = [0] p(S) = [1] x1 + [2] p(True) = [0] p(bsort) = [4] x1 + [1] x2 + [1] p(bubble) = [1] x1 + [0] p(bubble[Ite][False][Ite]) = [4] x1 + [5] x2 + [0] p(bubblesort) = [4] x1 + [1] p(len) = [1] x1 + [0] p(+#) = [1] x1 + [2] x2 + [1] p(<#) = [1] p(bsort#) = [4] x1 + [1] p(bubble#) = [2] p(bubble[Ite][False][Ite]#) = [2] p(bubblesort#) = [4] x1 + [2] p(len#) = [4] p(c_1) = [0] p(c_2) = [1] x1 + [4] x2 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [1] p(c_6) = [4] x1 + [0] p(c_7) = [0] p(c_8) = [4] p(c_9) = [1] p(c_10) = [1] p(c_11) = [1] p(c_12) = [1] p(c_13) = [1] x1 + [0] p(c_14) = [1] x1 + [0] Following rules are strictly oriented: bubble#(x,Nil()) = [2] > [0] = c_3() Following rules are (at-least) weakly oriented: bsort#(S(x'),Cons(x,xs)) = [4] x' + [9] >= [4] x' + [9] = c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) bubble#(x',Cons(x,xs)) = [2] >= [2] = c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) bubble[Ite][False][Ite]#(False() = [2] ,x' ,Cons(x,xs)) >= [2] = c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True() = [2] ,x' ,Cons(x,xs)) >= [2] = c_14(bubble#(x,xs)) bubblesort#(xs) = [4] xs + [2] >= [4] xs + [2] = c_5(bsort#(len(xs),xs)) +(x,S(0())) = [2] x + [2] >= [1] x + [2] = S(x) +(S(0()),y) = [1] y + [4] >= [1] y + [2] = S(y) <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) len(Cons(x,xs)) = [1] xs + [4] >= [1] xs + [4] = +(S(0()),len(xs)) len(Nil()) = [0] >= [0] = 0() *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):5 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):4 2:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x,Nil()) -> c_3():3 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2 -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1 3:W:bubble#(x,Nil()) -> c_3() 4:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x,Nil()) -> c_3():3 -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1 5:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x,Nil()) -> c_3():3 -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1 6:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: bubble#(x,Nil()) -> c_3() *** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) Consider the set of all dependency pairs 1: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) 2: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 4: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) 5: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) 6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,4,5,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1} Following symbols are considered usable: {+,<,bubble,bubble[Ite][False][Ite],len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#} TcT has computed the following interpretation: p(+) = 1 + x1*x2 p(0) = 0 p(<) = 1 p(Cons) = 1 + x1 + x2 p(False) = 1 p(Nil) = 0 p(S) = 1 + x1 p(True) = 1 p(bsort) = 2*x1 + 2*x1^2 + 2*x2 p(bubble) = 1 + x1 + x2 p(bubble[Ite][False][Ite]) = 1 + x1*x2 + x1*x3 p(bubblesort) = 2*x1^2 p(len) = x1 p(+#) = 2*x1 p(<#) = 1 + 2*x1*x2 p(bsort#) = 2 + 2*x1*x2 + 2*x2 p(bubble#) = 2 + x1 + 2*x2 p(bubble[Ite][False][Ite]#) = x1*x2 + 2*x1*x3 p(bubblesort#) = 2 + 2*x1 + 3*x1^2 p(len#) = 2 p(c_1) = 0 p(c_2) = x1 + x2 p(c_3) = 0 p(c_4) = x1 p(c_5) = x1 p(c_6) = 0 p(c_7) = 0 p(c_8) = 1 p(c_9) = 0 p(c_10) = 1 p(c_11) = 0 p(c_12) = 0 p(c_13) = x1 p(c_14) = x1 Following rules are strictly oriented: bubble#(x',Cons(x,xs)) = 4 + 2*x + x' + 2*xs > 2 + 2*x + x' + 2*xs = c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) Following rules are (at-least) weakly oriented: bsort#(S(x'),Cons(x,xs)) = 6 + 4*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs >= 6 + 3*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs = c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) bubble[Ite][False][Ite]#(False() = 2 + 2*x + x' + 2*xs ,x' ,Cons(x,xs)) >= 2 + x' + 2*xs = c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True() = 2 + 2*x + x' + 2*xs ,x' ,Cons(x,xs)) >= 2 + x + 2*xs = c_14(bubble#(x,xs)) bubblesort#(xs) = 2 + 2*xs + 3*xs^2 >= 2 + 2*xs + 2*xs^2 = c_5(bsort#(len(xs),xs)) +(x,S(0())) = 1 + x >= 1 + x = S(x) +(S(0()),y) = 1 + y >= 1 + y = S(y) <(x,0()) = 1 >= 1 = False() <(0(),S(y)) = 1 >= 1 = True() <(S(x),S(y)) = 1 >= 1 = <(x,y) bubble(x,Nil()) = 1 + x >= 1 + x = Cons(x,Nil()) bubble(x',Cons(x,xs)) = 2 + x + x' + xs >= 2 + x + x' + xs = bubble[Ite][False][Ite](<(x',x) ,x' ,Cons(x,xs)) bubble[Ite][False][Ite](False() = 2 + x + x' + xs ,x' ,Cons(x,xs)) >= 2 + x + x' + xs = Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True() = 2 + x + x' + xs ,x' ,Cons(x,xs)) >= 2 + x + x' + xs = Cons(x',bubble(x,xs)) len(Cons(x,xs)) = 1 + x + xs >= 1 + xs = +(S(0()),len(xs)) len(Nil()) = 0 >= 0 = 0() *** 1.1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 2:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):4 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):3 3:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2 4:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2 5:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: bubblesort#(xs) -> c_5(bsort#(len(xs),xs)) 1: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 2: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) 4: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) 3: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) *** 1.1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) bubble#(x,Nil()) -> c_3() bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3 -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2 2:S:len#(Cons(x,xs)) -> c_6(len#(xs)) -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2 3:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)) -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5 -->_2 bubble#(x,Nil()) -> c_3():4 -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3 4:W:bubble#(x,Nil()) -> c_3() 5:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))) -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7 -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6 6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5 -->_1 bubble#(x,Nil()) -> c_3():4 7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)) -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5 -->_1 bubble#(x,Nil()) -> c_3():4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)) ,bubble#(x,xs)) 5: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x' ,x) ,x' ,Cons(x,xs))) 7: bubble[Ite][False][Ite]#(True() ,x' ,Cons(x,xs)) -> c_14(bubble#(x ,xs)) 6: bubble[Ite][False][Ite]#(False() ,x' ,Cons(x,xs)) -> c_13(bubble#(x' ,xs)) 4: bubble#(x,Nil()) -> c_3() *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs)) -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2 2:S:len#(Cons(x,xs)) -> c_6(len#(xs)) -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: bubblesort#(xs) -> c_5(len#(xs)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) bubble(x,Nil()) -> Cons(x,Nil()) bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs)) bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs)) bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs)) len(Cons(x,xs)) -> +(S(0()),len(xs)) len(Nil()) -> 0() Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: bubblesort#(xs) -> c_5(len#(xs)) 2: len#(Cons(x,xs)) -> c_6(len#(xs)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#} TcT has computed the following interpretation: p(+) = [0] p(0) = [0] p(<) = [1] x1 + [0] p(Cons) = [1] x1 + [1] x2 + [8] p(False) = [0] p(Nil) = [0] p(S) = [1] x1 + [0] p(True) = [0] p(bsort) = [0] p(bubble) = [0] p(bubble[Ite][False][Ite]) = [0] p(bubblesort) = [0] p(len) = [0] p(+#) = [0] p(<#) = [0] p(bsort#) = [0] p(bubble#) = [0] p(bubble[Ite][False][Ite]#) = [0] p(bubblesort#) = [7] x1 + [15] p(len#) = [3] x1 + [7] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [2] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [1] p(c_10) = [0] p(c_11) = [0] p(c_12) = [1] x1 + [8] p(c_13) = [1] x1 + [2] p(c_14) = [0] Following rules are strictly oriented: bubblesort#(xs) = [7] xs + [15] > [6] xs + [14] = c_5(len#(xs)) len#(Cons(x,xs)) = [3] x + [3] xs + [31] > [3] xs + [7] = c_6(len#(xs)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Weak TRS Rules: Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: bubblesort#(xs) -> c_5(len#(xs)) len#(Cons(x,xs)) -> c_6(len#(xs)) Weak TRS Rules: Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:bubblesort#(xs) -> c_5(len#(xs)) -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2 2:W:len#(Cons(x,xs)) -> c_6(len#(xs)) -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: bubblesort#(xs) -> c_5(len#(xs)) 2: len#(Cons(x,xs)) -> c_6(len#(xs)) *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).