*** 1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
bsort(0(),xs) -> xs
bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubblesort(xs) -> bsort(len(xs),xs)
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Weak DP Rules:
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
Obligation:
Innermost
basic terms: {+,<,bsort,bubble,bubble[Ite][False][Ite],bubblesort,len}/{0,Cons,False,Nil,S,True}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
bsort#(0(),xs) -> c_1()
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
len#(Nil()) -> c_7()
Weak DPs
+#(x,S(0())) -> c_8()
+#(S(0()),y) -> c_9()
<#(x,0()) -> c_10()
<#(0(),S(y)) -> c_11()
<#(S(x),S(y)) -> c_12(<#(x,y))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(0(),xs) -> c_1()
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
len#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
+#(x,S(0())) -> c_8()
+#(S(0()),y) -> c_9()
<#(x,0()) -> c_10()
<#(0(),S(y)) -> c_11()
<#(S(x),S(y)) -> c_12(<#(x,y))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bsort(0(),xs) -> xs
bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
bubblesort(xs) -> bsort(len(xs),xs)
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
+#(x,S(0())) -> c_8()
+#(S(0()),y) -> c_9()
<#(x,0()) -> c_10()
<#(0(),S(y)) -> c_11()
<#(S(x),S(y)) -> c_12(<#(x,y))
bsort#(0(),xs) -> c_1()
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
len#(Nil()) -> c_7()
*** 1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(0(),xs) -> c_1()
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
len#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
+#(x,S(0())) -> c_8()
+#(S(0()),y) -> c_9()
<#(x,0()) -> c_10()
<#(0(),S(y)) -> c_11()
<#(S(x),S(y)) -> c_12(<#(x,y))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,7}
by application of
Pre({1,7}) = {2,5,6}.
Here rules are labelled as follows:
1: bsort#(0(),xs) -> c_1()
2: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
3: bubble#(x,Nil()) -> c_3()
4: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs))
,<#(x',x))
5: bubblesort#(xs) ->
c_5(bsort#(len(xs),xs),len#(xs))
6: len#(Cons(x,xs)) ->
c_6(+#(S(0()),len(xs)),len#(xs))
7: len#(Nil()) -> c_7()
8: +#(x,S(0())) -> c_8()
9: +#(S(0()),y) -> c_9()
10: <#(x,0()) -> c_10()
11: <#(0(),S(y)) -> c_11()
12: <#(S(x),S(y)) -> c_12(<#(x,y))
13: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
14: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
*** 1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
Strict TRS Rules:
Weak DP Rules:
+#(x,S(0())) -> c_8()
+#(S(0()),y) -> c_9()
<#(x,0()) -> c_10()
<#(0(),S(y)) -> c_11()
<#(S(x),S(y)) -> c_12(<#(x,y))
bsort#(0(),xs) -> c_1()
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
len#(Nil()) -> c_7()
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_1 bsort#(0(),xs) -> c_1():11
-->_2 bubble#(x,Nil()) -> c_3():2
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
2:S:bubble#(x,Nil()) -> c_3()
3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
-->_2 <#(S(x),S(y)) -> c_12(<#(x,y)):10
-->_2 <#(0(),S(y)) -> c_11():9
-->_2 <#(x,0()) -> c_10():8
4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
-->_2 len#(Nil()) -> c_7():14
-->_1 bsort#(0(),xs) -> c_1():11
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
-->_2 len#(Nil()) -> c_7():14
-->_1 +#(S(0()),y) -> c_9():7
-->_1 +#(x,S(0())) -> c_8():6
-->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
6:W:+#(x,S(0())) -> c_8()
7:W:+#(S(0()),y) -> c_9()
8:W:<#(x,0()) -> c_10()
9:W:<#(0(),S(y)) -> c_11()
10:W:<#(S(x),S(y)) -> c_12(<#(x,y))
-->_1 <#(S(x),S(y)) -> c_12(<#(x,y)):10
-->_1 <#(0(),S(y)) -> c_11():9
-->_1 <#(x,0()) -> c_10():8
11:W:bsort#(0(),xs) -> c_1()
12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_1 bubble#(x,Nil()) -> c_3():2
13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_1 bubble#(x,Nil()) -> c_3():2
14:W:len#(Nil()) -> c_7()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
6: +#(x,S(0())) -> c_8()
7: +#(S(0()),y) -> c_9()
14: len#(Nil()) -> c_7()
11: bsort#(0(),xs) -> c_1()
10: <#(S(x),S(y)) -> c_12(<#(x,y))
8: <#(x,0()) -> c_10()
9: <#(0(),S(y)) -> c_11()
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/2,c_6/2,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_2 bubble#(x,Nil()) -> c_3():2
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
2:S:bubble#(x,Nil()) -> c_3()
3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
-->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_1 bubble#(x,Nil()) -> c_3():2
13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
-->_1 bubble#(x,Nil()) -> c_3():2
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
len#(Cons(x,xs)) -> c_6(len#(xs))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Problem (S)
Strict DP Rules:
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_2 bubble#(x,Nil()) -> c_3():2
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
2:S:bubble#(x,Nil()) -> c_3()
3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):5
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
5:W:len#(Cons(x,xs)) -> c_6(len#(xs))
-->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):5
6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_1 bubble#(x,Nil()) -> c_3():2
7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_1 bubble#(x,Nil()) -> c_3():2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
5: len#(Cons(x,xs)) ->
c_6(len#(xs))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_2 bubble#(x,Nil()) -> c_3():2
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
2:S:bubble#(x,Nil()) -> c_3()
3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_1 bubble#(x,Nil()) -> c_3():2
7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
-->_1 bubble#(x,Nil()) -> c_3():2
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
Consider the set of all dependency pairs
1: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
2: bubble#(x,Nil()) -> c_3()
3: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
4: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
5: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
6: bubblesort#(xs) ->
c_5(bsort#(len(xs),xs))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,6}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_4) = {1},
uargs(c_5) = {1},
uargs(c_13) = {1},
uargs(c_14) = {1}
Following symbols are considered usable:
{+,len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}
TcT has computed the following interpretation:
p(+) = [1] x1 + [1] x2 + [3]
p(0) = [0]
p(<) = [3] x2 + [0]
p(Cons) = [1] x2 + [4]
p(False) = [2]
p(Nil) = [0]
p(S) = [1] x1 + [4]
p(True) = [0]
p(bsort) = [1] x1 + [4] x2 + [1]
p(bubble) = [0]
p(bubble[Ite][False][Ite]) = [4] x1 + [1] x2 + [2]
p(bubblesort) = [1]
p(len) = [2] x1 + [1]
p(+#) = [1] x1 + [0]
p(<#) = [1] x1 + [1]
p(bsort#) = [2] x1 + [0]
p(bubble#) = [0]
p(bubble[Ite][False][Ite]#) = [0]
p(bubblesort#) = [4] x1 + [4]
p(len#) = [0]
p(c_1) = [0]
p(c_2) = [1] x1 + [4] x2 + [6]
p(c_3) = [0]
p(c_4) = [4] x1 + [0]
p(c_5) = [1] x1 + [0]
p(c_6) = [1] x1 + [4]
p(c_7) = [0]
p(c_8) = [0]
p(c_9) = [0]
p(c_10) = [0]
p(c_11) = [0]
p(c_12) = [1] x1 + [0]
p(c_13) = [1] x1 + [0]
p(c_14) = [4] x1 + [0]
Following rules are strictly oriented:
bsort#(S(x'),Cons(x,xs)) = [2] x' + [8]
> [2] x' + [6]
= c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
Following rules are (at-least) weakly oriented:
bubble#(x,Nil()) = [0]
>= [0]
= c_3()
bubble#(x',Cons(x,xs)) = [0]
>= [0]
= c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
bubble[Ite][False][Ite]#(False() = [0]
,x'
,Cons(x,xs))
>= [0]
= c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True() = [0]
,x'
,Cons(x,xs))
>= [0]
= c_14(bubble#(x,xs))
bubblesort#(xs) = [4] xs + [4]
>= [4] xs + [2]
= c_5(bsort#(len(xs),xs))
+(x,S(0())) = [1] x + [7]
>= [1] x + [4]
= S(x)
+(S(0()),y) = [1] y + [7]
>= [1] y + [4]
= S(y)
len(Cons(x,xs)) = [2] xs + [9]
>= [2] xs + [8]
= +(S(0()),len(xs))
len(Nil()) = [1]
>= [0]
= 0()
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: bubble#(x,Nil()) -> c_3()
Consider the set of all dependency pairs
1: bubble#(x,Nil()) -> c_3()
2: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
3: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
4: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
5: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
6: bubblesort#(xs) ->
c_5(bsort#(len(xs),xs))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,6}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
*** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_4) = {1},
uargs(c_5) = {1},
uargs(c_13) = {1},
uargs(c_14) = {1}
Following symbols are considered usable:
{+,<,len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}
TcT has computed the following interpretation:
p(+) = [2] x1 + [1] x2 + [0]
p(0) = [0]
p(<) = [0]
p(Cons) = [1] x2 + [4]
p(False) = [0]
p(Nil) = [0]
p(S) = [1] x1 + [2]
p(True) = [0]
p(bsort) = [4] x1 + [1] x2 + [1]
p(bubble) = [1] x1 + [0]
p(bubble[Ite][False][Ite]) = [4] x1 + [5] x2 + [0]
p(bubblesort) = [4] x1 + [1]
p(len) = [1] x1 + [0]
p(+#) = [1] x1 + [2] x2 + [1]
p(<#) = [1]
p(bsort#) = [4] x1 + [1]
p(bubble#) = [2]
p(bubble[Ite][False][Ite]#) = [2]
p(bubblesort#) = [4] x1 + [2]
p(len#) = [4]
p(c_1) = [0]
p(c_2) = [1] x1 + [4] x2 + [0]
p(c_3) = [0]
p(c_4) = [1] x1 + [0]
p(c_5) = [1] x1 + [1]
p(c_6) = [4] x1 + [0]
p(c_7) = [0]
p(c_8) = [4]
p(c_9) = [1]
p(c_10) = [1]
p(c_11) = [1]
p(c_12) = [1]
p(c_13) = [1] x1 + [0]
p(c_14) = [1] x1 + [0]
Following rules are strictly oriented:
bubble#(x,Nil()) = [2]
> [0]
= c_3()
Following rules are (at-least) weakly oriented:
bsort#(S(x'),Cons(x,xs)) = [4] x' + [9]
>= [4] x' + [9]
= c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
bubble#(x',Cons(x,xs)) = [2]
>= [2]
= c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
bubble[Ite][False][Ite]#(False() = [2]
,x'
,Cons(x,xs))
>= [2]
= c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True() = [2]
,x'
,Cons(x,xs))
>= [2]
= c_14(bubble#(x,xs))
bubblesort#(xs) = [4] xs + [2]
>= [4] xs + [2]
= c_5(bsort#(len(xs),xs))
+(x,S(0())) = [2] x + [2]
>= [1] x + [2]
= S(x)
+(S(0()),y) = [1] y + [4]
>= [1] y + [2]
= S(y)
<(x,0()) = [0]
>= [0]
= False()
<(0(),S(y)) = [0]
>= [0]
= True()
<(S(x),S(y)) = [0]
>= [0]
= <(x,y)
len(Cons(x,xs)) = [1] xs + [4]
>= [1] xs + [4]
= +(S(0()),len(xs))
len(Nil()) = [0]
>= [0]
= 0()
*** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):5
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):4
2:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x,Nil()) -> c_3():3
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
3:W:bubble#(x,Nil()) -> c_3()
4:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x,Nil()) -> c_3():3
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
5:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x,Nil()) -> c_3():3
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
6:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: bubble#(x,Nil()) -> c_3()
*** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
Consider the set of all dependency pairs
1: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
2: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
4: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
5: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
6: bubblesort#(xs) ->
c_5(bsort#(len(xs),xs))
Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,4,5,6}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
*** 1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_4) = {1},
uargs(c_5) = {1},
uargs(c_13) = {1},
uargs(c_14) = {1}
Following symbols are considered usable:
{+,<,bubble,bubble[Ite][False][Ite],len,+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}
TcT has computed the following interpretation:
p(+) = 1 + x1*x2
p(0) = 0
p(<) = 1
p(Cons) = 1 + x1 + x2
p(False) = 1
p(Nil) = 0
p(S) = 1 + x1
p(True) = 1
p(bsort) = 2*x1 + 2*x1^2 + 2*x2
p(bubble) = 1 + x1 + x2
p(bubble[Ite][False][Ite]) = 1 + x1*x2 + x1*x3
p(bubblesort) = 2*x1^2
p(len) = x1
p(+#) = 2*x1
p(<#) = 1 + 2*x1*x2
p(bsort#) = 2 + 2*x1*x2 + 2*x2
p(bubble#) = 2 + x1 + 2*x2
p(bubble[Ite][False][Ite]#) = x1*x2 + 2*x1*x3
p(bubblesort#) = 2 + 2*x1 + 3*x1^2
p(len#) = 2
p(c_1) = 0
p(c_2) = x1 + x2
p(c_3) = 0
p(c_4) = x1
p(c_5) = x1
p(c_6) = 0
p(c_7) = 0
p(c_8) = 1
p(c_9) = 0
p(c_10) = 1
p(c_11) = 0
p(c_12) = 0
p(c_13) = x1
p(c_14) = x1
Following rules are strictly oriented:
bubble#(x',Cons(x,xs)) = 4 + 2*x + x' + 2*xs
> 2 + 2*x + x' + 2*xs
= c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
Following rules are (at-least) weakly oriented:
bsort#(S(x'),Cons(x,xs)) = 6 + 4*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs
>= 6 + 3*x + 2*x*x' + 2*x' + 2*x'*xs + 4*xs
= c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
bubble[Ite][False][Ite]#(False() = 2 + 2*x + x' + 2*xs
,x'
,Cons(x,xs))
>= 2 + x' + 2*xs
= c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True() = 2 + 2*x + x' + 2*xs
,x'
,Cons(x,xs))
>= 2 + x + 2*xs
= c_14(bubble#(x,xs))
bubblesort#(xs) = 2 + 2*xs + 3*xs^2
>= 2 + 2*xs + 2*xs^2
= c_5(bsort#(len(xs),xs))
+(x,S(0())) = 1 + x
>= 1 + x
= S(x)
+(S(0()),y) = 1 + y
>= 1 + y
= S(y)
<(x,0()) = 1
>= 1
= False()
<(0(),S(y)) = 1
>= 1
= True()
<(S(x),S(y)) = 1
>= 1
= <(x,y)
bubble(x,Nil()) = 1 + x
>= 1 + x
= Cons(x,Nil())
bubble(x',Cons(x,xs)) = 2 + x + x' + xs
>= 2 + x + x' + xs
= bubble[Ite][False][Ite](<(x',x)
,x'
,Cons(x,xs))
bubble[Ite][False][Ite](False() = 2 + x + x' + xs
,x'
,Cons(x,xs))
>= 2 + x + x' + xs
= Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True() = 2 + x + x' + xs
,x'
,Cons(x,xs))
>= 2 + x + x' + xs
= Cons(x',bubble(x,xs))
len(Cons(x,xs)) = 1 + x + xs
>= 1 + xs
= +(S(0()),len(xs))
len(Nil()) = 0
>= 0
= 0()
*** 1.1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
2:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):4
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):3
3:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
4:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
5:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
5: bubblesort#(xs) ->
c_5(bsort#(len(xs),xs))
1: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
2: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
4: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
3: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
*** 1.1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
bubble#(x,Nil()) -> c_3()
bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
-->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
-->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
3:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
-->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
-->_2 bubble#(x,Nil()) -> c_3():4
-->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
4:W:bubble#(x,Nil()) -> c_3()
5:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
-->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
-->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
-->_1 bubble#(x,Nil()) -> c_3():4
7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
-->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
-->_1 bubble#(x,Nil()) -> c_3():4
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: bsort#(S(x'),Cons(x,xs)) ->
c_2(bsort#(x',bubble(x,xs))
,bubble#(x,xs))
5: bubble#(x',Cons(x,xs)) ->
c_4(bubble[Ite][False][Ite]#(<(x'
,x)
,x'
,Cons(x,xs)))
7: bubble[Ite][False][Ite]#(True()
,x'
,Cons(x,xs)) -> c_14(bubble#(x
,xs))
6: bubble[Ite][False][Ite]#(False()
,x'
,Cons(x,xs)) -> c_13(bubble#(x'
,xs))
4: bubble#(x,Nil()) -> c_3()
*** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
-->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
-->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
bubblesort#(xs) -> c_5(len#(xs))
*** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
+(x,S(0())) -> S(x)
+(S(0()),y) -> S(y)
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
bubble(x,Nil()) -> Cons(x,Nil())
bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
len(Cons(x,xs)) -> +(S(0()),len(xs))
len(Nil()) -> 0()
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
*** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: bubblesort#(xs) -> c_5(len#(xs))
2: len#(Cons(x,xs)) ->
c_6(len#(xs))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_5) = {1},
uargs(c_6) = {1}
Following symbols are considered usable:
{+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}
TcT has computed the following interpretation:
p(+) = [0]
p(0) = [0]
p(<) = [1] x1 + [0]
p(Cons) = [1] x1 + [1] x2 + [8]
p(False) = [0]
p(Nil) = [0]
p(S) = [1] x1 + [0]
p(True) = [0]
p(bsort) = [0]
p(bubble) = [0]
p(bubble[Ite][False][Ite]) = [0]
p(bubblesort) = [0]
p(len) = [0]
p(+#) = [0]
p(<#) = [0]
p(bsort#) = [0]
p(bubble#) = [0]
p(bubble[Ite][False][Ite]#) = [0]
p(bubblesort#) = [7] x1 + [15]
p(len#) = [3] x1 + [7]
p(c_1) = [0]
p(c_2) = [0]
p(c_3) = [0]
p(c_4) = [0]
p(c_5) = [2] x1 + [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [0]
p(c_8) = [0]
p(c_9) = [1]
p(c_10) = [0]
p(c_11) = [0]
p(c_12) = [1] x1 + [8]
p(c_13) = [1] x1 + [2]
p(c_14) = [0]
Following rules are strictly oriented:
bubblesort#(xs) = [7] xs + [15]
> [6] xs + [14]
= c_5(len#(xs))
len#(Cons(x,xs)) = [3] x + [3] xs + [31]
> [3] xs + [7]
= c_6(len#(xs))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Weak TRS Rules:
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
bubblesort#(xs) -> c_5(len#(xs))
len#(Cons(x,xs)) -> c_6(len#(xs))
Weak TRS Rules:
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:bubblesort#(xs) -> c_5(len#(xs))
-->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
2:W:len#(Cons(x,xs)) -> c_6(len#(xs))
-->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: bubblesort#(xs) -> c_5(len#(xs))
2: len#(Cons(x,xs)) ->
c_6(len#(xs))
*** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{+/2,2,bsort/2,bubble/2,bubble[Ite][False][Ite]/3,bubblesort/1,len/1,+#/2,<#/2,bsort#/2,bubble#/2,bubble[Ite][False][Ite]#/3,bubblesort#/1,len#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
Obligation:
Innermost
basic terms: {+#,<#,bsort#,bubble#,bubble[Ite][False][Ite]#,bubblesort#,len#}/{0,Cons,False,Nil,S,True}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).