KILLEDRuntime Complexity (innermost) proof of /tmp/tmpgJHtve/bubblesort.xml
The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF).0 CpxRelTRS↳1 DecreasingLoopProof (⇔, 1191 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 6 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs↳9 RewriteLemmaProof (LOWER BOUND(ID), 365 ms)↳10 BEST↳11 typed CpxTrs↳12 RewriteLemmaProof (LOWER BOUND(ID), 110 ms)↳13 BEST↳14 typed CpxTrs↳15 typed CpxTrs↳16 typed CpxTrs(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +(S(0), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0
bubble(x, Nil) → Cons(x, Nil)
bsort(0, xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
The (relative) TRS S consists of the following rules:
+(x, S(0)) → S(x)
+(S(0), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Rewrite Strategy: INNERMOST(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
bsort(S(x'), Cons(x, Nil)) →+ bsort(x', Cons(x, Nil))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x' / S(x')].
The result substitution is [ ].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
The (relative) TRS S consists of the following rules:
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Rewrite Strategy: INNERMOST(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
bsort, bubble, len, <They will be analysed ascendingly in the following order:
bubble < bsort
< < bubble(8) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))The following defined symbols remain to be analysed:
len, bsort, bubble, <They will be analysed ascendingly in the following order:
bubble < bsort
< < bubble(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
len(gen_Cons:Nil4_0(n7_0)) → gen_S:0'5_0(n7_0), rt ∈ Ω(1 + n70)Induction Base:
len(gen_Cons:Nil4_0(0)) →RΩ(1)
0'Induction Step:
len(gen_Cons:Nil4_0(+(n7_0, 1))) →RΩ(1)
+'(S(0'), len(gen_Cons:Nil4_0(n7_0))) →IH
+'(S(0'), gen_S:0'5_0(c8_0)) →RΩ(0)
S(gen_S:0'5_0(n7_0))We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'Lemmas:
len(gen_Cons:Nil4_0(n7_0)) → gen_S:0'5_0(n7_0), rt ∈ Ω(1 + n70)Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))The following defined symbols remain to be analysed:
<, bsort, bubbleThey will be analysed ascendingly in the following order:
bubble < bsort
< < bubble(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
<(gen_S:0'5_0(n417_0), gen_S:0'5_0(+(1, n417_0))) → True, rt ∈ Ω(0)Induction Base:
<(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) →RΩ(0)
TrueInduction Step:
<(gen_S:0'5_0(+(n417_0, 1)), gen_S:0'5_0(+(1, +(n417_0, 1)))) →RΩ(0)
<(gen_S:0'5_0(n417_0), gen_S:0'5_0(+(1, n417_0))) →IH
TrueWe have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'Lemmas:
len(gen_Cons:Nil4_0(n7_0)) → gen_S:0'5_0(n7_0), rt ∈ Ω(1 + n70)
<(gen_S:0'5_0(n417_0), gen_S:0'5_0(+(1, n417_0))) → True, rt ∈ Ω(0)Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))The following defined symbols remain to be analysed:
bubble, bsortThey will be analysed ascendingly in the following order:
bubble < bsort(15) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'Lemmas:
len(gen_Cons:Nil4_0(n7_0)) → gen_S:0'5_0(n7_0), rt ∈ Ω(1 + n70)
<(gen_S:0'5_0(n417_0), gen_S:0'5_0(+(1, n417_0))) → True, rt ∈ Ω(0)Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))No more defined symbols left to analyse.
(16) Obligation:
Innermost TRS:
Rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +'(S(0'), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0'
bubble(x, Nil) → Cons(x, Nil)
bsort(0', xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Types:
bsort :: S:0' → Cons:Nil → Cons:Nil
S :: S:0' → S:0'
Cons :: S:0' → Cons:Nil → Cons:Nil
bubble :: S:0' → Cons:Nil → Cons:Nil
len :: Cons:Nil → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
bubble[Ite][False][Ite] :: True:False → S:0' → Cons:Nil → Cons:Nil
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
bubblesort :: Cons:Nil → Cons:Nil
True :: True:False
False :: True:False
hole_Cons:Nil1_0 :: Cons:Nil
hole_S:0'2_0 :: S:0'
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'Lemmas:
len(gen_Cons:Nil4_0(n7_0)) → gen_S:0'5_0(n7_0), rt ∈ Ω(1 + n70)Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))No more defined symbols left to analyse.