*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) -> 0() f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) -> 0() f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) -> 0() f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) -> 0() f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) -> 0() f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Weak DP Rules: Weak TRS Rules: Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: {f0,f1,f2,f3,f4,f5,f6} TcT has computed the following interpretation: p(0) = [0] p(S) = [0] p(f0) = [4] p(f1) = [4] p(f2) = [4] p(f3) = [4] p(f4) = [4] p(f5) = [4] p(f6) = [4] Following rules are strictly oriented: f0(x1,0(),x3,x4,x5) = [4] > [0] = 0() f0(x1,S(x),x3,0(),x5) = [4] > [0] = 0() f1(x1,x2,x3,x4,0()) = [4] > [0] = 0() f2(x1,x2,0(),x4,x5) = [4] > [0] = 0() f2(x1,x2,S(x),0(),0()) = [4] > [0] = 0() f2(x1,x2,S(x'),S(x),0()) = [4] > [0] = 0() f3(x1,x2,x3,x4,0()) = [4] > [0] = 0() f4(0(),x2,x3,x4,x5) = [4] > [0] = 0() f4(S(x),0(),x3,x4,0()) = [4] > [0] = 0() f4(S(x'),S(x),x3,x4,0()) = [4] > [0] = 0() f5(x1,x2,x3,x4,0()) = [4] > [0] = 0() f6(x1,x2,x3,x4,0()) = [4] > [0] = 0() Following rules are (at-least) weakly oriented: f0(x1,S(x'),x3,S(x),x5) = [4] >= [4] = f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,S(x)) = [4] >= [4] = f2(x2,x1,x3,x4,x) f2(x1,x2,S(x'),0(),S(x)) = [4] >= [4] = f3(x1,x2,x',0(),x) f2(x1,x2,S(x''),S(x'),S(x)) = [4] >= [4] = f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,S(x)) = [4] >= [4] = f4(x1,x2,x4,x3,x) f4(S(x'),0(),x3,x4,S(x)) = [4] >= [4] = f3(x',0(),x3,x4,x) f4(S(x''),S(x'),x3,x4,S(x)) = [4] >= [4] = f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,S(x)) = [4] >= [4] = f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,S(x)) = [4] >= [4] = f0(x1,x2,x4,x3,x) *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Weak DP Rules: Weak TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f1(x1,x2,x3,x4,0()) -> 0() f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),S(x),0()) -> 0() f3(x1,x2,x3,x4,0()) -> 0() f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),S(x),x3,x4,0()) -> 0() f5(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,0()) -> 0() Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [2] p(S) = [0] p(f0) = [2] p(f1) = [1] x5 + [0] p(f2) = [2] p(f3) = [2] p(f4) = [3] p(f5) = [2] x3 + [2] p(f6) = [2] Following rules are strictly oriented: f0(x1,S(x'),x3,S(x),x5) = [2] > [0] = f1(x',S(x'),x,S(x),S(x)) f4(S(x'),0(),x3,x4,S(x)) = [3] > [2] = f3(x',0(),x3,x4,x) f4(S(x''),S(x'),x3,x4,S(x)) = [3] > [2] = f2(S(x''),x',x3,x4,x) Following rules are (at-least) weakly oriented: f0(x1,0(),x3,x4,x5) = [2] >= [2] = 0() f0(x1,S(x),x3,0(),x5) = [2] >= [2] = 0() f1(x1,x2,x3,x4,0()) = [2] >= [2] = 0() f1(x1,x2,x3,x4,S(x)) = [0] >= [2] = f2(x2,x1,x3,x4,x) f2(x1,x2,0(),x4,x5) = [2] >= [2] = 0() f2(x1,x2,S(x),0(),0()) = [2] >= [2] = 0() f2(x1,x2,S(x'),0(),S(x)) = [2] >= [2] = f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) = [2] >= [2] = 0() f2(x1,x2,S(x''),S(x'),S(x)) = [2] >= [2] = f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) = [2] >= [2] = 0() f3(x1,x2,x3,x4,S(x)) = [2] >= [3] = f4(x1,x2,x4,x3,x) f4(0(),x2,x3,x4,x5) = [3] >= [2] = 0() f4(S(x),0(),x3,x4,0()) = [3] >= [2] = 0() f4(S(x'),S(x),x3,x4,0()) = [3] >= [2] = 0() f5(x1,x2,x3,x4,0()) = [2] x3 + [2] >= [2] = 0() f5(x1,x2,x3,x4,S(x)) = [2] x3 + [2] >= [2] = f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,0()) = [2] >= [2] = 0() f6(x1,x2,x3,x4,S(x)) = [2] >= [2] = f0(x1,x2,x4,x3,x) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Weak DP Rules: Weak TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) -> 0() f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),S(x),0()) -> 0() f3(x1,x2,x3,x4,0()) -> 0() f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) -> 0() f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,0()) -> 0() Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: {f0,f1,f2,f3,f4,f5,f6} TcT has computed the following interpretation: p(0) = [0] p(S) = [1] x1 + [4] p(f0) = [2] x4 + [0] p(f1) = [2] x3 + [0] p(f2) = [2] x3 + [0] p(f3) = [2] x3 + [2] x4 + [0] p(f4) = [2] x3 + [2] x4 + [0] p(f5) = [2] x3 + [0] p(f6) = [2] x3 + [0] Following rules are strictly oriented: f2(x1,x2,S(x'),0(),S(x)) = [2] x' + [8] > [2] x' + [0] = f3(x1,x2,x',0(),x) Following rules are (at-least) weakly oriented: f0(x1,0(),x3,x4,x5) = [2] x4 + [0] >= [0] = 0() f0(x1,S(x),x3,0(),x5) = [0] >= [0] = 0() f0(x1,S(x'),x3,S(x),x5) = [2] x + [8] >= [2] x + [0] = f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) = [2] x3 + [0] >= [0] = 0() f1(x1,x2,x3,x4,S(x)) = [2] x3 + [0] >= [2] x3 + [0] = f2(x2,x1,x3,x4,x) f2(x1,x2,0(),x4,x5) = [0] >= [0] = 0() f2(x1,x2,S(x),0(),0()) = [2] x + [8] >= [0] = 0() f2(x1,x2,S(x'),S(x),0()) = [2] x' + [8] >= [0] = 0() f2(x1,x2,S(x''),S(x'),S(x)) = [2] x'' + [8] >= [2] x'' + [8] = f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) = [2] x3 + [2] x4 + [0] >= [0] = 0() f3(x1,x2,x3,x4,S(x)) = [2] x3 + [2] x4 + [0] >= [2] x3 + [2] x4 + [0] = f4(x1,x2,x4,x3,x) f4(0(),x2,x3,x4,x5) = [2] x3 + [2] x4 + [0] >= [0] = 0() f4(S(x),0(),x3,x4,0()) = [2] x3 + [2] x4 + [0] >= [0] = 0() f4(S(x'),0(),x3,x4,S(x)) = [2] x3 + [2] x4 + [0] >= [2] x3 + [2] x4 + [0] = f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) = [2] x3 + [2] x4 + [0] >= [0] = 0() f4(S(x''),S(x'),x3,x4,S(x)) = [2] x3 + [2] x4 + [0] >= [2] x3 + [0] = f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) = [2] x3 + [0] >= [0] = 0() f5(x1,x2,x3,x4,S(x)) = [2] x3 + [0] >= [2] x3 + [0] = f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,0()) = [2] x3 + [0] >= [0] = 0() f6(x1,x2,x3,x4,S(x)) = [2] x3 + [0] >= [2] x3 + [0] = f0(x1,x2,x4,x3,x) *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Weak DP Rules: Weak TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) -> 0() f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) -> 0() f3(x1,x2,x3,x4,0()) -> 0() f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) -> 0() f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,0()) -> 0() Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(S) = [0] p(f0) = [4] p(f1) = [0] p(f2) = [7] p(f3) = [5] p(f4) = [7] p(f5) = [0] p(f6) = [5] Following rules are strictly oriented: f2(x1,x2,S(x''),S(x'),S(x)) = [7] > [0] = f5(x1,x2,S(x''),x',x) f6(x1,x2,x3,x4,S(x)) = [5] > [4] = f0(x1,x2,x4,x3,x) Following rules are (at-least) weakly oriented: f0(x1,0(),x3,x4,x5) = [4] >= [0] = 0() f0(x1,S(x),x3,0(),x5) = [4] >= [0] = 0() f0(x1,S(x'),x3,S(x),x5) = [4] >= [0] = f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) = [0] >= [0] = 0() f1(x1,x2,x3,x4,S(x)) = [0] >= [7] = f2(x2,x1,x3,x4,x) f2(x1,x2,0(),x4,x5) = [7] >= [0] = 0() f2(x1,x2,S(x),0(),0()) = [7] >= [0] = 0() f2(x1,x2,S(x'),0(),S(x)) = [7] >= [5] = f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) = [7] >= [0] = 0() f3(x1,x2,x3,x4,0()) = [5] >= [0] = 0() f3(x1,x2,x3,x4,S(x)) = [5] >= [7] = f4(x1,x2,x4,x3,x) f4(0(),x2,x3,x4,x5) = [7] >= [0] = 0() f4(S(x),0(),x3,x4,0()) = [7] >= [0] = 0() f4(S(x'),0(),x3,x4,S(x)) = [7] >= [5] = f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) = [7] >= [0] = 0() f4(S(x''),S(x'),x3,x4,S(x)) = [7] >= [7] = f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) = [0] >= [0] = 0() f5(x1,x2,x3,x4,S(x)) = [0] >= [5] = f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,0()) = [5] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) Weak DP Rules: Weak TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) -> 0() f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) -> 0() f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) -> 0() f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) -> 0() f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: {f0,f1,f2,f3,f4,f5,f6} TcT has computed the following interpretation: p(0) = [2] p(S) = [1] x1 + [4] p(f0) = [1] x2 + [2] x4 + [1] p(f1) = [1] x2 + [2] x3 + [4] p(f2) = [1] x1 + [2] x3 + [3] p(f3) = [1] x1 + [2] x3 + [2] x4 + [7] p(f4) = [1] x1 + [2] x3 + [2] x4 + [4] p(f5) = [1] x1 + [2] x3 + [3] p(f6) = [1] x2 + [2] x3 + [2] Following rules are strictly oriented: f1(x1,x2,x3,x4,S(x)) = [1] x2 + [2] x3 + [4] > [1] x2 + [2] x3 + [3] = f2(x2,x1,x3,x4,x) f3(x1,x2,x3,x4,S(x)) = [1] x1 + [2] x3 + [2] x4 + [7] > [1] x1 + [2] x3 + [2] x4 + [4] = f4(x1,x2,x4,x3,x) f5(x1,x2,x3,x4,S(x)) = [1] x1 + [2] x3 + [3] > [1] x1 + [2] x3 + [2] = f6(x2,x1,x3,x4,x) Following rules are (at-least) weakly oriented: f0(x1,0(),x3,x4,x5) = [2] x4 + [3] >= [2] = 0() f0(x1,S(x),x3,0(),x5) = [1] x + [9] >= [2] = 0() f0(x1,S(x'),x3,S(x),x5) = [2] x + [1] x' + [13] >= [2] x + [1] x' + [8] = f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) = [1] x2 + [2] x3 + [4] >= [2] = 0() f2(x1,x2,0(),x4,x5) = [1] x1 + [7] >= [2] = 0() f2(x1,x2,S(x),0(),0()) = [2] x + [1] x1 + [11] >= [2] = 0() f2(x1,x2,S(x'),0(),S(x)) = [2] x' + [1] x1 + [11] >= [2] x' + [1] x1 + [11] = f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) = [2] x' + [1] x1 + [11] >= [2] = 0() f2(x1,x2,S(x''),S(x'),S(x)) = [2] x'' + [1] x1 + [11] >= [2] x'' + [1] x1 + [11] = f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) = [1] x1 + [2] x3 + [2] x4 + [7] >= [2] = 0() f4(0(),x2,x3,x4,x5) = [2] x3 + [2] x4 + [6] >= [2] = 0() f4(S(x),0(),x3,x4,0()) = [1] x + [2] x3 + [2] x4 + [8] >= [2] = 0() f4(S(x'),0(),x3,x4,S(x)) = [1] x' + [2] x3 + [2] x4 + [8] >= [1] x' + [2] x3 + [2] x4 + [7] = f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) = [1] x' + [2] x3 + [2] x4 + [8] >= [2] = 0() f4(S(x''),S(x'),x3,x4,S(x)) = [1] x'' + [2] x3 + [2] x4 + [8] >= [1] x'' + [2] x3 + [7] = f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) = [1] x1 + [2] x3 + [3] >= [2] = 0() f6(x1,x2,x3,x4,0()) = [1] x2 + [2] x3 + [2] >= [2] = 0() f6(x1,x2,x3,x4,S(x)) = [1] x2 + [2] x3 + [2] >= [1] x2 + [2] x3 + [1] = f0(x1,x2,x4,x3,x) *** 1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f0(x1,0(),x3,x4,x5) -> 0() f0(x1,S(x),x3,0(),x5) -> 0() f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x)) f1(x1,x2,x3,x4,0()) -> 0() f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x) f2(x1,x2,0(),x4,x5) -> 0() f2(x1,x2,S(x),0(),0()) -> 0() f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x) f2(x1,x2,S(x'),S(x),0()) -> 0() f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x) f3(x1,x2,x3,x4,0()) -> 0() f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x) f4(0(),x2,x3,x4,x5) -> 0() f4(S(x),0(),x3,x4,0()) -> 0() f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x) f4(S(x'),S(x),x3,x4,0()) -> 0() f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x) f5(x1,x2,x3,x4,0()) -> 0() f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x) f6(x1,x2,x3,x4,0()) -> 0() f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x) Signature: {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1} Obligation: Innermost basic terms: {f0,f1,f2,f3,f4,f5,f6}/{0,S} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).