We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { f4(S(x''), S(x'), x3, x4, S(x)) -> f2(S(x''), x', x3, x4, x)
  , f4(S(x'), S(x), x3, x4, 0()) -> 0()
  , f4(S(x'), 0(), x3, x4, S(x)) -> f3(x', 0(), x3, x4, x)
  , f4(S(x), 0(), x3, x4, 0()) -> 0()
  , f4(0(), x2, x3, x4, x5) -> 0()
  , f2(x1, x2, S(x''), S(x'), S(x)) -> f5(x1, x2, S(x''), x', x)
  , f2(x1, x2, S(x'), S(x), 0()) -> 0()
  , f2(x1, x2, S(x'), 0(), S(x)) -> f3(x1, x2, x', 0(), x)
  , f2(x1, x2, S(x), 0(), 0()) -> 0()
  , f2(x1, x2, 0(), x4, x5) -> 0()
  , f3(x1, x2, x3, x4, S(x)) -> f4(x1, x2, x4, x3, x)
  , f3(x1, x2, x3, x4, 0()) -> 0()
  , f5(x1, x2, x3, x4, S(x)) -> f6(x2, x1, x3, x4, x)
  , f5(x1, x2, x3, x4, 0()) -> 0()
  , f0(x1, S(x'), x3, S(x), x5) -> f1(x', S(x'), x, S(x), S(x))
  , f0(x1, S(x), x3, 0(), x5) -> 0()
  , f0(x1, 0(), x3, x4, x5) -> 0()
  , f1(x1, x2, x3, x4, S(x)) -> f2(x2, x1, x3, x4, x)
  , f1(x1, x2, x3, x4, 0()) -> 0()
  , f6(x1, x2, x3, x4, S(x)) -> f0(x1, x2, x4, x3, x)
  , f6(x1, x2, x3, x4, 0()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Strict Trs:
  { f4(S(x''), S(x'), x3, x4, S(x)) -> f2(S(x''), x', x3, x4, x)
  , f4(S(x'), S(x), x3, x4, 0()) -> 0()
  , f4(S(x'), 0(), x3, x4, S(x)) -> f3(x', 0(), x3, x4, x)
  , f4(S(x), 0(), x3, x4, 0()) -> 0()
  , f4(0(), x2, x3, x4, x5) -> 0()
  , f2(x1, x2, S(x''), S(x'), S(x)) -> f5(x1, x2, S(x''), x', x)
  , f2(x1, x2, S(x'), S(x), 0()) -> 0()
  , f2(x1, x2, S(x'), 0(), S(x)) -> f3(x1, x2, x', 0(), x)
  , f2(x1, x2, S(x), 0(), 0()) -> 0()
  , f2(x1, x2, 0(), x4, x5) -> 0()
  , f3(x1, x2, x3, x4, S(x)) -> f4(x1, x2, x4, x3, x)
  , f3(x1, x2, x3, x4, 0()) -> 0()
  , f5(x1, x2, x3, x4, S(x)) -> f6(x2, x1, x3, x4, x)
  , f5(x1, x2, x3, x4, 0()) -> 0()
  , f0(x1, S(x'), x3, S(x), x5) -> f1(x', S(x'), x, S(x), S(x))
  , f0(x1, S(x), x3, 0(), x5) -> 0()
  , f0(x1, 0(), x3, x4, x5) -> 0()
  , f1(x1, x2, x3, x4, S(x)) -> f2(x2, x1, x3, x4, x)
  , f1(x1, x2, x3, x4, 0()) -> 0()
  , f6(x1, x2, x3, x4, S(x)) -> f0(x1, x2, x4, x3, x)
  , f6(x1, x2, x3, x4, 0()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
  Uargs(c_8) = {1}, Uargs(c_11) = {1}, Uargs(c_13) = {1},
  Uargs(c_15) = {1}, Uargs(c_18) = {1}, Uargs(c_20) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

                     [S](x1) = [0]                      
                               [0]                      
                                                        
                         [0] = [0]                      
                               [0]                      
                                                        
  [f4^#](x1, x2, x3, x4, x5) = [0 0] x3 + [0 0] x4 + [0]
                               [2 1]      [0 2]      [0]
                                                        
                   [c_1](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
  [f2^#](x1, x2, x3, x4, x5) = [0]                      
                               [0]                      
                                                        
                       [c_2] = [0]                      
                               [0]                      
                                                        
                   [c_3](x1) = [1 0] x1 + [0]           
                               [0 1]      [2]           
                                                        
  [f3^#](x1, x2, x3, x4, x5) = [0]                      
                               [0]                      
                                                        
                       [c_4] = [0]                      
                               [0]                      
                                                        
                       [c_5] = [0]                      
                               [0]                      
                                                        
                   [c_6](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
  [f5^#](x1, x2, x3, x4, x5) = [0 0] x1 + [0]           
                               [0 2]      [0]           
                                                        
                       [c_7] = [0]                      
                               [0]                      
                                                        
                   [c_8](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
                       [c_9] = [0]                      
                               [0]                      
                                                        
                      [c_10] = [0]                      
                               [0]                      
                                                        
                  [c_11](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
                      [c_12] = [0]                      
                               [0]                      
                                                        
                  [c_13](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
  [f6^#](x1, x2, x3, x4, x5) = [0]                      
                               [0]                      
                                                        
                      [c_14] = [0]                      
                               [0]                      
                                                        
  [f0^#](x1, x2, x3, x4, x5) = [0]                      
                               [0]                      
                                                        
                  [c_15](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
  [f1^#](x1, x2, x3, x4, x5) = [1]                      
                               [0]                      
                                                        
                      [c_16] = [0]                      
                               [0]                      
                                                        
                      [c_17] = [0]                      
                               [0]                      
                                                        
                  [c_18](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
                      [c_19] = [0]                      
                               [0]                      
                                                        
                  [c_20](x1) = [1 0] x1 + [0]           
                               [0 1]      [0]           
                                                        
                      [c_21] = [0]                      
                               [0]                      

The order satisfies the following ordering constraints:

  [f4^#(S(x''), S(x'), x3, x4, S(x))] =  [0 0] x3 + [0 0] x4 + [0]             
                                         [2 1]      [0 2]      [0]             
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_1(f2^#(S(x''), x', x3, x4, x))]    
                                                                               
     [f4^#(S(x'), S(x), x3, x4, 0())] =  [0 0] x3 + [0 0] x4 + [0]             
                                         [2 1]      [0 2]      [0]             
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_2()]                               
                                                                               
     [f4^#(S(x'), 0(), x3, x4, S(x))] =  [0 0] x3 + [0 0] x4 + [0]             
                                         [2 1]      [0 2]      [0]             
                                      ?  [0]                                   
                                         [2]                                   
                                      =  [c_3(f3^#(x', 0(), x3, x4, x))]       
                                                                               
       [f4^#(S(x), 0(), x3, x4, 0())] =  [0 0] x3 + [0 0] x4 + [0]             
                                         [2 1]      [0 2]      [0]             
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_4()]                               
                                                                               
          [f4^#(0(), x2, x3, x4, x5)] =  [0 0] x3 + [0 0] x4 + [0]             
                                         [2 1]      [0 2]      [0]             
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_5()]                               
                                                                               
  [f2^#(x1, x2, S(x''), S(x'), S(x))] =  [0]                                   
                                         [0]                                   
                                      ?  [0 0] x1 + [0]                        
                                         [0 2]      [0]                        
                                      =  [c_6(f5^#(x1, x2, S(x''), x', x))]    
                                                                               
     [f2^#(x1, x2, S(x'), S(x), 0())] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_7()]                               
                                                                               
     [f2^#(x1, x2, S(x'), 0(), S(x))] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_8(f3^#(x1, x2, x', 0(), x))]       
                                                                               
       [f2^#(x1, x2, S(x), 0(), 0())] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_9()]                               
                                                                               
          [f2^#(x1, x2, 0(), x4, x5)] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_10()]                              
                                                                               
         [f3^#(x1, x2, x3, x4, S(x))] =  [0]                                   
                                         [0]                                   
                                      ?  [0 0] x3 + [0 0] x4 + [0]             
                                         [0 2]      [2 1]      [0]             
                                      =  [c_11(f4^#(x1, x2, x4, x3, x))]       
                                                                               
          [f3^#(x1, x2, x3, x4, 0())] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_12()]                              
                                                                               
         [f5^#(x1, x2, x3, x4, S(x))] =  [0 0] x1 + [0]                        
                                         [0 2]      [0]                        
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_13(f6^#(x2, x1, x3, x4, x))]       
                                                                               
          [f5^#(x1, x2, x3, x4, 0())] =  [0 0] x1 + [0]                        
                                         [0 2]      [0]                        
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_14()]                              
                                                                               
         [f6^#(x1, x2, x3, x4, S(x))] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_20(f0^#(x1, x2, x4, x3, x))]       
                                                                               
          [f6^#(x1, x2, x3, x4, 0())] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_21()]                              
                                                                               
      [f0^#(x1, S(x'), x3, S(x), x5)] =  [0]                                   
                                         [0]                                   
                                      ?  [1]                                   
                                         [0]                                   
                                      =  [c_15(f1^#(x', S(x'), x, S(x), S(x)))]
                                                                               
        [f0^#(x1, S(x), x3, 0(), x5)] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_16()]                              
                                                                               
          [f0^#(x1, 0(), x3, x4, x5)] =  [0]                                   
                                         [0]                                   
                                      >= [0]                                   
                                         [0]                                   
                                      =  [c_17()]                              
                                                                               
         [f1^#(x1, x2, x3, x4, S(x))] =  [1]                                   
                                         [0]                                   
                                      >  [0]                                   
                                         [0]                                   
                                      =  [c_18(f2^#(x2, x1, x3, x4, x))]       
                                                                               
          [f1^#(x1, x2, x3, x4, 0())] =  [1]                                   
                                         [0]                                   
                                      >  [0]                                   
                                         [0]                                   
                                      =  [c_19()]                              
                                                                               

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17() }
Weak DPs:
  { f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {2,4,5,12,14,16,18,19} by
applications of Pre({2,4,5,12,14,16,18,19}) = {3,6,8,11,13,15}.
Here rules are labeled as follows:

  DPs:
    { 1: f4^#(S(x''), S(x'), x3, x4, S(x)) ->
         c_1(f2^#(S(x''), x', x3, x4, x))
    , 2: f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
    , 3: f4^#(S(x'), 0(), x3, x4, S(x)) ->
         c_3(f3^#(x', 0(), x3, x4, x))
    , 4: f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
    , 5: f4^#(0(), x2, x3, x4, x5) -> c_5()
    , 6: f2^#(x1, x2, S(x''), S(x'), S(x)) ->
         c_6(f5^#(x1, x2, S(x''), x', x))
    , 7: f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
    , 8: f2^#(x1, x2, S(x'), 0(), S(x)) ->
         c_8(f3^#(x1, x2, x', 0(), x))
    , 9: f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
    , 10: f2^#(x1, x2, 0(), x4, x5) -> c_10()
    , 11: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
    , 12: f3^#(x1, x2, x3, x4, 0()) -> c_12()
    , 13: f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
    , 14: f5^#(x1, x2, x3, x4, 0()) -> c_14()
    , 15: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
    , 16: f6^#(x1, x2, x3, x4, 0()) -> c_21()
    , 17: f0^#(x1, S(x'), x3, S(x), x5) ->
          c_15(f1^#(x', S(x'), x, S(x), S(x)))
    , 18: f0^#(x1, S(x), x3, 0(), x5) -> c_16()
    , 19: f0^#(x1, 0(), x3, x4, x5) -> c_17()
    , 20: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
    , 21: f1^#(x1, x2, x3, x4, 0()) -> c_19() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x))) }
Weak DPs:
  { f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {11} by applications of
Pre({11}) = {10}. Here rules are labeled as follows:

  DPs:
    { 1: f4^#(S(x''), S(x'), x3, x4, S(x)) ->
         c_1(f2^#(S(x''), x', x3, x4, x))
    , 2: f4^#(S(x'), 0(), x3, x4, S(x)) ->
         c_3(f3^#(x', 0(), x3, x4, x))
    , 3: f2^#(x1, x2, S(x''), S(x'), S(x)) ->
         c_6(f5^#(x1, x2, S(x''), x', x))
    , 4: f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
    , 5: f2^#(x1, x2, S(x'), 0(), S(x)) ->
         c_8(f3^#(x1, x2, x', 0(), x))
    , 6: f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
    , 7: f2^#(x1, x2, 0(), x4, x5) -> c_10()
    , 8: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
    , 9: f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
    , 10: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
    , 11: f0^#(x1, S(x'), x3, S(x), x5) ->
          c_15(f1^#(x', S(x'), x, S(x), S(x)))
    , 12: f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
    , 13: f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
    , 14: f4^#(0(), x2, x3, x4, x5) -> c_5()
    , 15: f3^#(x1, x2, x3, x4, 0()) -> c_12()
    , 16: f5^#(x1, x2, x3, x4, 0()) -> c_14()
    , 17: f6^#(x1, x2, x3, x4, 0()) -> c_21()
    , 18: f0^#(x1, S(x), x3, 0(), x5) -> c_16()
    , 19: f0^#(x1, 0(), x3, x4, x5) -> c_17()
    , 20: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
    , 21: f1^#(x1, x2, x3, x4, 0()) -> c_19() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x)) }
Weak DPs:
  { f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {10} by applications of
Pre({10}) = {9}. Here rules are labeled as follows:

  DPs:
    { 1: f4^#(S(x''), S(x'), x3, x4, S(x)) ->
         c_1(f2^#(S(x''), x', x3, x4, x))
    , 2: f4^#(S(x'), 0(), x3, x4, S(x)) ->
         c_3(f3^#(x', 0(), x3, x4, x))
    , 3: f2^#(x1, x2, S(x''), S(x'), S(x)) ->
         c_6(f5^#(x1, x2, S(x''), x', x))
    , 4: f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
    , 5: f2^#(x1, x2, S(x'), 0(), S(x)) ->
         c_8(f3^#(x1, x2, x', 0(), x))
    , 6: f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
    , 7: f2^#(x1, x2, 0(), x4, x5) -> c_10()
    , 8: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
    , 9: f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
    , 10: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
    , 11: f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
    , 12: f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
    , 13: f4^#(0(), x2, x3, x4, x5) -> c_5()
    , 14: f3^#(x1, x2, x3, x4, 0()) -> c_12()
    , 15: f5^#(x1, x2, x3, x4, 0()) -> c_14()
    , 16: f6^#(x1, x2, x3, x4, 0()) -> c_21()
    , 17: f0^#(x1, S(x'), x3, S(x), x5) ->
          c_15(f1^#(x', S(x'), x, S(x), S(x)))
    , 18: f0^#(x1, S(x), x3, 0(), x5) -> c_16()
    , 19: f0^#(x1, 0(), x3, x4, x5) -> c_17()
    , 20: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
    , 21: f1^#(x1, x2, x3, x4, 0()) -> c_19() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x)) }
Weak DPs:
  { f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {9} by applications of
Pre({9}) = {3}. Here rules are labeled as follows:

  DPs:
    { 1: f4^#(S(x''), S(x'), x3, x4, S(x)) ->
         c_1(f2^#(S(x''), x', x3, x4, x))
    , 2: f4^#(S(x'), 0(), x3, x4, S(x)) ->
         c_3(f3^#(x', 0(), x3, x4, x))
    , 3: f2^#(x1, x2, S(x''), S(x'), S(x)) ->
         c_6(f5^#(x1, x2, S(x''), x', x))
    , 4: f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
    , 5: f2^#(x1, x2, S(x'), 0(), S(x)) ->
         c_8(f3^#(x1, x2, x', 0(), x))
    , 6: f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
    , 7: f2^#(x1, x2, 0(), x4, x5) -> c_10()
    , 8: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
    , 9: f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
    , 10: f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
    , 11: f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
    , 12: f4^#(0(), x2, x3, x4, x5) -> c_5()
    , 13: f3^#(x1, x2, x3, x4, 0()) -> c_12()
    , 14: f5^#(x1, x2, x3, x4, 0()) -> c_14()
    , 15: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
    , 16: f6^#(x1, x2, x3, x4, 0()) -> c_21()
    , 17: f0^#(x1, S(x'), x3, S(x), x5) ->
          c_15(f1^#(x', S(x'), x, S(x), S(x)))
    , 18: f0^#(x1, S(x), x3, 0(), x5) -> c_16()
    , 19: f0^#(x1, 0(), x3, x4, x5) -> c_17()
    , 20: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
    , 21: f1^#(x1, x2, x3, x4, 0()) -> c_19() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x)) }
Weak DPs:
  { f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
  , f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
  , f4^#(0(), x2, x3, x4, x5) -> c_5()
  , f3^#(x1, x2, x3, x4, 0()) -> c_12()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f5^#(x1, x2, x3, x4, 0()) -> c_14()
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f6^#(x1, x2, x3, x4, 0()) -> c_21()
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f0^#(x1, S(x), x3, 0(), x5) -> c_16()
  , f0^#(x1, 0(), x3, x4, x5) -> c_17()
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x))
  , f1^#(x1, x2, x3, x4, 0()) -> c_19() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ f4^#(S(x'), S(x), x3, x4, 0()) -> c_2()
, f4^#(S(x), 0(), x3, x4, 0()) -> c_4()
, f4^#(0(), x2, x3, x4, x5) -> c_5()
, f3^#(x1, x2, x3, x4, 0()) -> c_12()
, f5^#(x1, x2, x3, x4, 0()) -> c_14()
, f6^#(x1, x2, x3, x4, 0()) -> c_21()
, f0^#(x1, S(x), x3, 0(), x5) -> c_16()
, f0^#(x1, 0(), x3, x4, x5) -> c_17()
, f1^#(x1, x2, x3, x4, 0()) -> c_19() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x)) }
Weak DPs:
  { f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 4: f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , 6: f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , 7: f2^#(x1, x2, 0(), x4, x5) -> c_10() }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
    Uargs(c_8) = {1}, Uargs(c_11) = {1}, Uargs(c_13) = {1},
    Uargs(c_15) = {1}, Uargs(c_18) = {1}, Uargs(c_20) = {1}
  
  TcT has computed the following constructor-restricted matrix
  interpretation. Note that the diagonal of the component-wise maxima
  of interpretation-entries (of constructors) contains no more than 0
  non-zero entries.
  
                       [S](x1) = [3]         
                                             
                           [0] = [0]         
                                             
    [f4^#](x1, x2, x3, x4, x5) = [1]         
                                             
                     [c_1](x1) = [1] x1 + [0]
                                             
    [f2^#](x1, x2, x3, x4, x5) = [1]         
                                             
                     [c_3](x1) = [1] x1 + [0]
                                             
    [f3^#](x1, x2, x3, x4, x5) = [1]         
                                             
                     [c_6](x1) = [1] x1 + [0]
                                             
    [f5^#](x1, x2, x3, x4, x5) = [1]         
                                             
                         [c_7] = [0]         
                                             
                     [c_8](x1) = [1] x1 + [0]
                                             
                         [c_9] = [0]         
                                             
                        [c_10] = [0]         
                                             
                    [c_11](x1) = [1] x1 + [0]
                                             
                    [c_13](x1) = [1] x1 + [0]
                                             
    [f6^#](x1, x2, x3, x4, x5) = [1]         
                                             
    [f0^#](x1, x2, x3, x4, x5) = [1]         
                                             
                    [c_15](x1) = [1] x1 + [0]
                                             
    [f1^#](x1, x2, x3, x4, x5) = [1]         
                                             
                    [c_18](x1) = [1] x1 + [0]
                                             
                    [c_20](x1) = [1] x1 + [0]
  
  The order satisfies the following ordering constraints:
  
    [f4^#(S(x''), S(x'), x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_1(f2^#(S(x''), x', x3, x4, x))]    
                                                                                 
       [f4^#(S(x'), 0(), x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_3(f3^#(x', 0(), x3, x4, x))]       
                                                                                 
    [f2^#(x1, x2, S(x''), S(x'), S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_6(f5^#(x1, x2, S(x''), x', x))]    
                                                                                 
       [f2^#(x1, x2, S(x'), S(x), 0())] =  [1]                                   
                                        >  [0]                                   
                                        =  [c_7()]                               
                                                                                 
       [f2^#(x1, x2, S(x'), 0(), S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_8(f3^#(x1, x2, x', 0(), x))]       
                                                                                 
         [f2^#(x1, x2, S(x), 0(), 0())] =  [1]                                   
                                        >  [0]                                   
                                        =  [c_9()]                               
                                                                                 
            [f2^#(x1, x2, 0(), x4, x5)] =  [1]                                   
                                        >  [0]                                   
                                        =  [c_10()]                              
                                                                                 
           [f3^#(x1, x2, x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_11(f4^#(x1, x2, x4, x3, x))]       
                                                                                 
           [f5^#(x1, x2, x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_13(f6^#(x2, x1, x3, x4, x))]       
                                                                                 
           [f6^#(x1, x2, x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_20(f0^#(x1, x2, x4, x3, x))]       
                                                                                 
        [f0^#(x1, S(x'), x3, S(x), x5)] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_15(f1^#(x', S(x'), x, S(x), S(x)))]
                                                                                 
           [f1^#(x1, x2, x3, x4, S(x))] =  [1]                                   
                                        >= [1]                                   
                                        =  [c_18(f2^#(x2, x1, x3, x4, x))]       
                                                                                 

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x)) }
Weak DPs:
  { f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
  , f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
  , f2^#(x1, x2, 0(), x4, x5) -> c_10()
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ f2^#(x1, x2, S(x'), S(x), 0()) -> c_7()
, f2^#(x1, x2, S(x), 0(), 0()) -> c_9()
, f2^#(x1, x2, 0(), x4, x5) -> c_10() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x)) }
Weak DPs:
  { f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: f4^#(S(x'), 0(), x3, x4, S(x)) ->
       c_3(f3^#(x', 0(), x3, x4, x))
  , 4: f2^#(x1, x2, S(x'), 0(), S(x)) ->
       c_8(f3^#(x1, x2, x', 0(), x))
  , 5: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , 7: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , 8: f0^#(x1, S(x'), x3, S(x), x5) ->
       c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , 9: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
    Uargs(c_8) = {1}, Uargs(c_11) = {1}, Uargs(c_13) = {1},
    Uargs(c_15) = {1}, Uargs(c_18) = {1}, Uargs(c_20) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                       [S](x1) = [1] x1 + [3]                  
                                                               
                           [0] = [0]                           
                                                               
    [f4^#](x1, x2, x3, x4, x5) = [3] x1 + [2] x3 + [2] x4 + [2]
                                                               
                     [c_1](x1) = [1] x1 + [0]                  
                                                               
    [f2^#](x1, x2, x3, x4, x5) = [3] x1 + [2] x3 + [2]         
                                                               
                     [c_3](x1) = [1] x1 + [0]                  
                                                               
    [f3^#](x1, x2, x3, x4, x5) = [3] x1 + [2] x3 + [2] x4 + [3]
                                                               
                     [c_6](x1) = [1] x1 + [1]                  
                                                               
    [f5^#](x1, x2, x3, x4, x5) = [3] x1 + [2] x3 + [1]         
                                                               
                         [c_7] = [0]                           
                                                               
                     [c_8](x1) = [1] x1 + [4]                  
                                                               
                         [c_9] = [0]                           
                                                               
                        [c_10] = [0]                           
                                                               
                    [c_11](x1) = [1] x1 + [0]                  
                                                               
                    [c_13](x1) = [1] x1 + [0]                  
                                                               
    [f6^#](x1, x2, x3, x4, x5) = [3] x2 + [2] x3 + [1]         
                                                               
    [f0^#](x1, x2, x3, x4, x5) = [3] x2 + [2] x4 + [0]         
                                                               
                    [c_15](x1) = [1] x1 + [1]                  
                                                               
    [f1^#](x1, x2, x3, x4, x5) = [3] x2 + [2] x3 + [3]         
                                                               
                    [c_18](x1) = [1] x1 + [0]                  
                                                               
                    [c_20](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
    [f4^#(S(x''), S(x'), x3, x4, S(x))] =  [3] x'' + [2] x3 + [2] x4 + [11]      
                                        >= [3] x'' + [2] x3 + [11]               
                                        =  [c_1(f2^#(S(x''), x', x3, x4, x))]    
                                                                                 
       [f4^#(S(x'), 0(), x3, x4, S(x))] =  [3] x' + [2] x3 + [2] x4 + [11]       
                                        >  [3] x' + [2] x3 + [2] x4 + [3]        
                                        =  [c_3(f3^#(x', 0(), x3, x4, x))]       
                                                                                 
    [f2^#(x1, x2, S(x''), S(x'), S(x))] =  [2] x'' + [3] x1 + [8]                
                                        >= [2] x'' + [3] x1 + [8]                
                                        =  [c_6(f5^#(x1, x2, S(x''), x', x))]    
                                                                                 
       [f2^#(x1, x2, S(x'), 0(), S(x))] =  [2] x' + [3] x1 + [8]                 
                                        >  [2] x' + [3] x1 + [7]                 
                                        =  [c_8(f3^#(x1, x2, x', 0(), x))]       
                                                                                 
           [f3^#(x1, x2, x3, x4, S(x))] =  [2] x3 + [2] x4 + [3] x1 + [3]        
                                        >  [2] x3 + [2] x4 + [3] x1 + [2]        
                                        =  [c_11(f4^#(x1, x2, x4, x3, x))]       
                                                                                 
           [f5^#(x1, x2, x3, x4, S(x))] =  [2] x3 + [3] x1 + [1]                 
                                        >= [2] x3 + [3] x1 + [1]                 
                                        =  [c_13(f6^#(x2, x1, x3, x4, x))]       
                                                                                 
           [f6^#(x1, x2, x3, x4, S(x))] =  [2] x3 + [3] x2 + [1]                 
                                        >  [2] x3 + [3] x2 + [0]                 
                                        =  [c_20(f0^#(x1, x2, x4, x3, x))]       
                                                                                 
        [f0^#(x1, S(x'), x3, S(x), x5)] =  [3] x' + [2] x + [15]                 
                                        >  [3] x' + [2] x + [13]                 
                                        =  [c_15(f1^#(x', S(x'), x, S(x), S(x)))]
                                                                                 
           [f1^#(x1, x2, x3, x4, S(x))] =  [2] x3 + [3] x2 + [3]                 
                                        >  [2] x3 + [3] x2 + [2]                 
                                        =  [c_18(f2^#(x2, x1, x3, x4, x))]       
                                                                                 

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: f4^#(S(x''), S(x'), x3, x4, S(x)) ->
       c_1(f2^#(S(x''), x', x3, x4, x))
  , 2: f4^#(S(x'), 0(), x3, x4, S(x)) ->
       c_3(f3^#(x', 0(), x3, x4, x))
  , 3: f2^#(x1, x2, S(x''), S(x'), S(x)) ->
       c_6(f5^#(x1, x2, S(x''), x', x))
  , 4: f2^#(x1, x2, S(x'), 0(), S(x)) ->
       c_8(f3^#(x1, x2, x', 0(), x))
  , 5: f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , 6: f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , 7: f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , 8: f0^#(x1, S(x'), x3, S(x), x5) ->
       c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , 9: f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,4,5,7,8,9}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8,9}, their number of application
is equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { f4^#(S(x''), S(x'), x3, x4, S(x)) ->
    c_1(f2^#(S(x''), x', x3, x4, x))
  , f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
  , f2^#(x1, x2, S(x''), S(x'), S(x)) ->
    c_6(f5^#(x1, x2, S(x''), x', x))
  , f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
  , f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
  , f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
  , f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
  , f0^#(x1, S(x'), x3, S(x), x5) ->
    c_15(f1^#(x', S(x'), x, S(x), S(x)))
  , f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ f4^#(S(x''), S(x'), x3, x4, S(x)) ->
  c_1(f2^#(S(x''), x', x3, x4, x))
, f4^#(S(x'), 0(), x3, x4, S(x)) -> c_3(f3^#(x', 0(), x3, x4, x))
, f2^#(x1, x2, S(x''), S(x'), S(x)) ->
  c_6(f5^#(x1, x2, S(x''), x', x))
, f2^#(x1, x2, S(x'), 0(), S(x)) -> c_8(f3^#(x1, x2, x', 0(), x))
, f3^#(x1, x2, x3, x4, S(x)) -> c_11(f4^#(x1, x2, x4, x3, x))
, f5^#(x1, x2, x3, x4, S(x)) -> c_13(f6^#(x2, x1, x3, x4, x))
, f6^#(x1, x2, x3, x4, S(x)) -> c_20(f0^#(x1, x2, x4, x3, x))
, f0^#(x1, S(x'), x3, S(x), x5) ->
  c_15(f1^#(x', S(x'), x, S(x), S(x)))
, f1^#(x1, x2, x3, x4, S(x)) -> c_18(f2^#(x2, x1, x3, x4, x)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))