(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

add0(S(x), x2) → +(S(0), add0(x2, x))
add0(0, x2) → x2

The (relative) TRS S consists of the following rules:

+(x, S(0)) → S(x)
+(S(0), y) → S(y)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
add0(S(z0), z1) → +(S(0), add0(z1, z0))
add0(0, z0) → z0
Tuples:

+'(z0, S(0)) → c
+'(S(0), z0) → c1
ADD0(S(z0), z1) → c2(+'(S(0), add0(z1, z0)), ADD0(z1, z0))
ADD0(0, z0) → c3
S tuples:

ADD0(S(z0), z1) → c2(+'(S(0), add0(z1, z0)), ADD0(z1, z0))
ADD0(0, z0) → c3
K tuples:none
Defined Rule Symbols:

add0, +

Defined Pair Symbols:

+', ADD0

Compound Symbols:

c, c1, c2, c3

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing nodes:

ADD0(0, z0) → c3
+'(z0, S(0)) → c
+'(S(0), z0) → c1

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
add0(S(z0), z1) → +(S(0), add0(z1, z0))
add0(0, z0) → z0
Tuples:

ADD0(S(z0), z1) → c2(+'(S(0), add0(z1, z0)), ADD0(z1, z0))
S tuples:

ADD0(S(z0), z1) → c2(+'(S(0), add0(z1, z0)), ADD0(z1, z0))
K tuples:none
Defined Rule Symbols:

add0, +

Defined Pair Symbols:

ADD0

Compound Symbols:

c2

(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
add0(S(z0), z1) → +(S(0), add0(z1, z0))
add0(0, z0) → z0
Tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
S tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
K tuples:none
Defined Rule Symbols:

add0, +

Defined Pair Symbols:

ADD0

Compound Symbols:

c2

(7) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
add0(S(z0), z1) → +(S(0), add0(z1, z0))
add0(0, z0) → z0

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
S tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
K tuples:none
Defined Rule Symbols:none

Defined Pair Symbols:

ADD0

Compound Symbols:

c2

(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
We considered the (Usable) Rules:none
And the Tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ADD0(x1, x2)) = [2]x1 + [2]x2   
POL(S(x1)) = [1] + x1   
POL(c2(x1)) = x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
S tuples:none
K tuples:

ADD0(S(z0), z1) → c2(ADD0(z1, z0))
Defined Rule Symbols:none

Defined Pair Symbols:

ADD0

Compound Symbols:

c2

(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(12) BOUNDS(1, 1)