(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))

The (relative) TRS S consists of the following rules:

g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))

The (relative) TRS S consists of the following rules:

g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
lt0, g, f

They will be analysed ascendingly in the following order:
lt0 < g
lt0 < f

(6) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))

The following defined symbols remain to be analysed:
lt0, g, f

They will be analysed ascendingly in the following order:
lt0 < g
lt0 < f

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

Induction Base:
lt0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(0)) →RΩ(1)
False

Induction Step:
lt0(gen_Cons:Nil3_1(+(n5_1, 1)), gen_Cons:Nil3_1(+(n5_1, 1))) →RΩ(1)
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) →IH
False

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))

The following defined symbols remain to be analysed:
g, f

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol g.

(11) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))

The following defined symbols remain to be analysed:
f

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(13) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))

No more defined symbols left to analyse.

(14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

(15) BOUNDS(n^1, INF)

(16) Obligation:

Innermost TRS:
Rules:
lt0(Cons(x', xs'), Cons(x, xs)) → lt0(xs', xs)
g(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
f(x, Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
lt0(x, Nil) → False
g(x, Cons(x', xs)) → g[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs))
f(x, Cons(x', xs)) → f(f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)), f[Ite][False][Ite](lt0(x, Cons(Nil, Nil)), x, Cons(x', xs)))
number42Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x, y) → Cons(f(x, y), Cons(g(x, y), Nil))
g[Ite][False][Ite](False, Cons(x, xs), y) → g(xs, Cons(Cons(Nil, Nil), y))
g[Ite][False][Ite](True, x', Cons(x, xs)) → g(x', xs)
f[Ite][False][Ite](False, Cons(x, xs), y) → xs
f[Ite][False][Ite](True, x', Cons(x, xs)) → xs
f[Ite][False][Ite](False, x, y) → Cons(Cons(Nil, Nil), y)
f[Ite][False][Ite](True, x, y) → x

Types:
lt0 :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
g :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
f :: Cons:Nil → Cons:Nil → Cons:Nil
False :: False:True
g[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
f[Ite][False][Ite] :: False:True → Cons:Nil → Cons:Nil → Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
True :: False:True
hole_False:True1_1 :: False:True
hole_Cons:Nil2_1 :: Cons:Nil
gen_Cons:Nil3_1 :: Nat → Cons:Nil

Lemmas:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_1(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
lt0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(n5_1)) → False, rt ∈ Ω(1 + n51)

(18) BOUNDS(n^1, INF)