(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(x, xs)) → subsets[Ite][True][Let](Cons(x, xs), subsets(xs))
subsets(Nil) → Cons(Nil, Nil)
mapconsapp(x', Cons(x, xs), rest) → Cons(Cons(x', x), mapconsapp(x', xs, rest))
mapconsapp(x, Nil, rest) → rest
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(x, xs), subs) → mapconsapp(x, subs, subs)
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
mapconsapp/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
The (relative) TRS S consists of the following rules:
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
subsets(Cons(xs)) → subsets[Ite][True][Let](Cons(xs), subsets(xs))
subsets(Nil) → Cons(Nil)
mapconsapp(Cons(xs), rest) → Cons(mapconsapp(xs, rest))
mapconsapp(Nil, rest) → rest
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
goal(xs) → subsets(xs)
subsets[Ite][True][Let](Cons(xs), subs) → mapconsapp(subs, subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
subsets, mapconsapp
(8) Obligation:
Innermost TRS:
Rules:
subsets(
Cons(
xs)) →
subsets[Ite][True][Let](
Cons(
xs),
subsets(
xs))
subsets(
Nil) →
Cons(
Nil)
mapconsapp(
Cons(
xs),
rest) →
Cons(
mapconsapp(
xs,
rest))
mapconsapp(
Nil,
rest) →
restnotEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
subsets(
xs)
subsets[Ite][True][Let](
Cons(
xs),
subs) →
mapconsapp(
subs,
subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
subsets, mapconsapp
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
subsets(
gen_Cons:Nil3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
subsets(gen_Cons:Nil3_0(+(1, 0)))
Induction Step:
subsets(gen_Cons:Nil3_0(+(1, +(n5_0, 1)))) →RΩ(1)
subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), subsets(gen_Cons:Nil3_0(+(1, n5_0)))) →IH
subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
subsets(
Cons(
xs)) →
subsets[Ite][True][Let](
Cons(
xs),
subsets(
xs))
subsets(
Nil) →
Cons(
Nil)
mapconsapp(
Cons(
xs),
rest) →
Cons(
mapconsapp(
xs,
rest))
mapconsapp(
Nil,
rest) →
restnotEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
subsets(
xs)
subsets[Ite][True][Let](
Cons(
xs),
subs) →
mapconsapp(
subs,
subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
mapconsapp
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mapconsapp(
gen_Cons:Nil3_0(
n3503_0),
gen_Cons:Nil3_0(
b)) →
gen_Cons:Nil3_0(
+(
n3503_0,
b)), rt ∈ Ω(1 + n3503
0)
Induction Base:
mapconsapp(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) →RΩ(1)
gen_Cons:Nil3_0(b)
Induction Step:
mapconsapp(gen_Cons:Nil3_0(+(n3503_0, 1)), gen_Cons:Nil3_0(b)) →RΩ(1)
Cons(mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b))) →IH
Cons(gen_Cons:Nil3_0(+(b, c3504_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
subsets(
Cons(
xs)) →
subsets[Ite][True][Let](
Cons(
xs),
subsets(
xs))
subsets(
Nil) →
Cons(
Nil)
mapconsapp(
Cons(
xs),
rest) →
Cons(
mapconsapp(
xs,
rest))
mapconsapp(
Nil,
rest) →
restnotEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
subsets(
xs)
subsets[Ite][True][Let](
Cons(
xs),
subs) →
mapconsapp(
subs,
subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n3503_0, b)), rt ∈ Ω(1 + n35030)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
subsets(
Cons(
xs)) →
subsets[Ite][True][Let](
Cons(
xs),
subsets(
xs))
subsets(
Nil) →
Cons(
Nil)
mapconsapp(
Cons(
xs),
rest) →
Cons(
mapconsapp(
xs,
rest))
mapconsapp(
Nil,
rest) →
restnotEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
subsets(
xs)
subsets[Ite][True][Let](
Cons(
xs),
subs) →
mapconsapp(
subs,
subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
mapconsapp(gen_Cons:Nil3_0(n3503_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n3503_0, b)), rt ∈ Ω(1 + n35030)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
subsets(
Cons(
xs)) →
subsets[Ite][True][Let](
Cons(
xs),
subsets(
xs))
subsets(
Nil) →
Cons(
Nil)
mapconsapp(
Cons(
xs),
rest) →
Cons(
mapconsapp(
xs,
rest))
mapconsapp(
Nil,
rest) →
restnotEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
subsets(
xs)
subsets[Ite][True][Let](
Cons(
xs),
subs) →
mapconsapp(
subs,
subs)
Types:
subsets :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
subsets[Ite][True][Let] :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
mapconsapp :: Cons:Nil → Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_True:False2_0 :: True:False
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
subsets(gen_Cons:Nil3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(22) BOUNDS(n^1, INF)