*** 1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
goal(xs) -> shuffle(xs)
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
shuffle(Nil()) -> Nil()
Weak DP Rules:
Weak TRS Rules:
Signature:
{append/2,goal/1,reverse/1,shuffle/1} / {Cons/2,Nil/0}
Obligation:
Innermost
basic terms: {append,goal,reverse,shuffle}/{Cons,Nil}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
append#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
reverse#(Nil()) -> c_5()
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
shuffle#(Nil()) -> c_7()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
append#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
reverse#(Nil()) -> c_5()
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
shuffle#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
goal(xs) -> shuffle(xs)
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
shuffle(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
append#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
reverse#(Nil()) -> c_5()
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
shuffle#(Nil()) -> c_7()
*** 1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
append#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
reverse#(Nil()) -> c_5()
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
shuffle#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{2,5,7}
by application of
Pre({2,5,7}) = {1,3,4,6}.
Here rules are labelled as follows:
1: append#(Cons(x,xs),ys) ->
c_1(append#(xs,ys))
2: append#(Nil(),ys) -> c_2()
3: goal#(xs) -> c_3(shuffle#(xs))
4: reverse#(Cons(x,xs)) ->
c_4(append#(reverse(xs)
,Cons(x,Nil()))
,reverse#(xs))
5: reverse#(Nil()) -> c_5()
6: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs))
,reverse#(xs))
7: shuffle#(Nil()) -> c_7()
*** 1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
append#(Nil(),ys) -> c_2()
reverse#(Nil()) -> c_5()
shuffle#(Nil()) -> c_7()
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
-->_1 append#(Nil(),ys) -> c_2():5
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
2:S:goal#(xs) -> c_3(shuffle#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
-->_1 shuffle#(Nil()) -> c_7():7
3:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
-->_2 reverse#(Nil()) -> c_5():6
-->_1 append#(Nil(),ys) -> c_2():5
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
4:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Nil()) -> c_7():7
-->_2 reverse#(Nil()) -> c_5():6
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
5:W:append#(Nil(),ys) -> c_2()
6:W:reverse#(Nil()) -> c_5()
7:W:shuffle#(Nil()) -> c_7()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
6: reverse#(Nil()) -> c_5()
7: shuffle#(Nil()) -> c_7()
5: append#(Nil(),ys) -> c_2()
*** 1.1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
goal#(xs) -> c_3(shuffle#(xs))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveHeads
Proof:
Consider the dependency graph
1:S:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
2:S:goal#(xs) -> c_3(shuffle#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
3:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
4:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
[(2,goal#(xs) -> c_3(shuffle#(xs)))]
*** 1.1.1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Problem (S)
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
*** 1.1.1.1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
Proof:
We decompose the input problem according to the dependency graph into the upper component
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
and a lower component
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
Further, following extension rules are added to the lower component.
shuffle#(Cons(x,xs)) -> reverse#(xs)
shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs))
,reverse#(xs))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1}
Following symbols are considered usable:
{append,reverse,append#,goal#,reverse#,shuffle#}
TcT has computed the following interpretation:
p(Cons) = [1] x2 + [1]
p(Nil) = [0]
p(append) = [1] x1 + [1] x2 + [0]
p(goal) = [1] x1 + [4]
p(reverse) = [1] x1 + [0]
p(shuffle) = [1] x1 + [1]
p(append#) = [1] x1 + [8] x2 + [1]
p(goal#) = [4] x1 + [0]
p(reverse#) = [2] x1 + [0]
p(shuffle#) = [2] x1 + [6]
p(c_1) = [1] x1 + [1]
p(c_2) = [0]
p(c_3) = [0]
p(c_4) = [4] x1 + [1] x2 + [1]
p(c_5) = [0]
p(c_6) = [1] x1 + [1]
p(c_7) = [1]
Following rules are strictly oriented:
shuffle#(Cons(x,xs)) = [2] xs + [8]
> [2] xs + [7]
= c_6(shuffle#(reverse(xs))
,reverse#(xs))
Following rules are (at-least) weakly oriented:
append(Cons(x,xs),ys) = [1] xs + [1] ys + [1]
>= [1] xs + [1] ys + [1]
= Cons(x,append(xs,ys))
append(Nil(),ys) = [1] ys + [0]
>= [1] ys + [0]
= ys
reverse(Cons(x,xs)) = [1] xs + [1]
>= [1] xs + [1]
= append(reverse(xs)
,Cons(x,Nil()))
reverse(Nil()) = [0]
>= [0]
= Nil()
*** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs))
,reverse#(xs))
*** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> reverse#(xs)
shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: append#(Cons(x,xs),ys) ->
c_1(append#(xs,ys))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> reverse#(xs)
shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_1) = {1},
uargs(c_4) = {1,2}
Following symbols are considered usable:
{append,reverse,append#,goal#,reverse#,shuffle#}
TcT has computed the following interpretation:
p(Cons) = 1 + x1 + x2
p(Nil) = 0
p(append) = x1 + x2
p(goal) = 1 + 2*x1^2
p(reverse) = 1 + x1
p(shuffle) = 4*x1 + x1^2
p(append#) = 4*x1
p(goal#) = 2 + x1^2
p(reverse#) = 1 + 6*x1 + 2*x1^2
p(shuffle#) = 3*x1^2
p(c_1) = 1 + x1
p(c_2) = 0
p(c_3) = x1
p(c_4) = 1 + x1 + x2
p(c_5) = 1
p(c_6) = 1
p(c_7) = 1
Following rules are strictly oriented:
append#(Cons(x,xs),ys) = 4 + 4*x + 4*xs
> 1 + 4*xs
= c_1(append#(xs,ys))
Following rules are (at-least) weakly oriented:
reverse#(Cons(x,xs)) = 9 + 10*x + 4*x*xs + 2*x^2 + 10*xs + 2*xs^2
>= 6 + 10*xs + 2*xs^2
= c_4(append#(reverse(xs)
,Cons(x,Nil()))
,reverse#(xs))
shuffle#(Cons(x,xs)) = 3 + 6*x + 6*x*xs + 3*x^2 + 6*xs + 3*xs^2
>= 1 + 6*xs + 2*xs^2
= reverse#(xs)
shuffle#(Cons(x,xs)) = 3 + 6*x + 6*x*xs + 3*x^2 + 6*xs + 3*xs^2
>= 3 + 6*xs + 3*xs^2
= shuffle#(reverse(xs))
append(Cons(x,xs),ys) = 1 + x + xs + ys
>= 1 + x + xs + ys
= Cons(x,append(xs,ys))
append(Nil(),ys) = ys
>= ys
= ys
reverse(Cons(x,xs)) = 2 + x + xs
>= 2 + x + xs
= append(reverse(xs)
,Cons(x,Nil()))
reverse(Nil()) = 1
>= 0
= Nil()
*** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> reverse#(xs)
shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> reverse#(xs)
shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
2:W:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):2
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
3:W:shuffle#(Cons(x,xs)) -> reverse#(xs)
-->_1 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):2
4:W:shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
-->_1 shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs)):4
-->_1 shuffle#(Cons(x,xs)) -> reverse#(xs):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: shuffle#(Cons(x,xs)) ->
shuffle#(reverse(xs))
3: shuffle#(Cons(x,xs)) ->
reverse#(xs)
2: reverse#(Cons(x,xs)) ->
c_4(append#(reverse(xs)
,Cons(x,Nil()))
,reverse#(xs))
1: append#(Cons(x,xs),ys) ->
c_1(append#(xs,ys))
*** 1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.1.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):3
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
2:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
3:W:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
-->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: append#(Cons(x,xs),ys) ->
c_1(append#(xs,ys))
*** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
2:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
-->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
*** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Problem (S)
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
*** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: reverse#(Cons(x,xs)) ->
c_4(reverse#(xs))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_4) = {1},
uargs(c_6) = {1,2}
Following symbols are considered usable:
{append,reverse,append#,goal#,reverse#,shuffle#}
TcT has computed the following interpretation:
p(Cons) = 1 + x2
p(Nil) = 0
p(append) = x1 + x2
p(goal) = x1
p(reverse) = x1
p(shuffle) = 1 + x1
p(append#) = 4 + x1*x2 + x1^2 + x2 + 2*x2^2
p(goal#) = 1 + 4*x1
p(reverse#) = 1 + x1
p(shuffle#) = 2 + 2*x1^2
p(c_1) = 0
p(c_2) = 0
p(c_3) = 1
p(c_4) = x1
p(c_5) = 0
p(c_6) = 1 + x1 + x2
p(c_7) = 0
Following rules are strictly oriented:
reverse#(Cons(x,xs)) = 2 + xs
> 1 + xs
= c_4(reverse#(xs))
Following rules are (at-least) weakly oriented:
shuffle#(Cons(x,xs)) = 4 + 4*xs + 2*xs^2
>= 4 + xs + 2*xs^2
= c_6(shuffle#(reverse(xs))
,reverse#(xs))
append(Cons(x,xs),ys) = 1 + xs + ys
>= 1 + xs + ys
= Cons(x,append(xs,ys))
append(Nil(),ys) = ys
>= ys
= ys
reverse(Cons(x,xs)) = 1 + xs
>= 1 + xs
= append(reverse(xs)
,Cons(x,Nil()))
reverse(Nil()) = 0
>= 0
= Nil()
*** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
-->_1 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):1
2:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
-->_2 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs))
,reverse#(xs))
1: reverse#(Cons(x,xs)) ->
c_4(reverse#(xs))
*** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_2 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):2
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
2:W:reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
-->_1 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: reverse#(Cons(x,xs)) ->
c_4(reverse#(xs))
*** 1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
*** 1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs)))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1}
Following symbols are considered usable:
{append,reverse,append#,goal#,reverse#,shuffle#}
TcT has computed the following interpretation:
p(Cons) = [1] x2 + [1]
p(Nil) = [0]
p(append) = [1] x1 + [1] x2 + [0]
p(goal) = [1]
p(reverse) = [1] x1 + [0]
p(shuffle) = [1] x1 + [1]
p(append#) = [1] x1 + [2] x2 + [0]
p(goal#) = [1] x1 + [1]
p(reverse#) = [0]
p(shuffle#) = [10] x1 + [1]
p(c_1) = [0]
p(c_2) = [1]
p(c_3) = [4] x1 + [1]
p(c_4) = [1] x1 + [2]
p(c_5) = [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [0]
Following rules are strictly oriented:
shuffle#(Cons(x,xs)) = [10] xs + [11]
> [10] xs + [1]
= c_6(shuffle#(reverse(xs)))
Following rules are (at-least) weakly oriented:
append(Cons(x,xs),ys) = [1] xs + [1] ys + [1]
>= [1] xs + [1] ys + [1]
= Cons(x,append(xs,ys))
append(Nil(),ys) = [1] ys + [0]
>= [1] ys + [0]
= ys
reverse(Cons(x,xs)) = [1] xs + [1]
>= [1] xs + [1]
= append(reverse(xs)
,Cons(x,Nil()))
reverse(Nil()) = [0]
>= [0]
= Nil()
*** 1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
-->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs))):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: shuffle#(Cons(x,xs)) ->
c_6(shuffle#(reverse(xs)))
*** 1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
append(Nil(),ys) -> ys
reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
reverse(Nil()) -> Nil()
Signature:
{append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {append#,goal#,reverse#,shuffle#}/{Cons,Nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).