KILLEDRuntime Complexity (innermost) proof of /tmp/tmpYHpkka/select.xml
The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).0 CpxTRS↳1 DecreasingLoopProof (⇔, 393 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs↳9 RewriteLemmaProof (LOWER BOUND(ID), 498 ms)↳10 BEST↳11 typed CpxTrs↳12 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Rewrite Strategy: INNERMOST(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
selects(x', revprefix, Cons(x, xs)) →+ Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [x' / x, revprefix / Cons(x', revprefix)].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
S is empty.
Rewrite Strategy: INNERMOST(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
Innermost TRS:
Rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Types:
selects :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
select :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
selects, revappThey will be analysed ascendingly in the following order:
revapp < selects(8) Obligation:
Innermost TRS:
Rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Types:
selects :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
select :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:NilGenerator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil2_0(x))The following defined symbols remain to be analysed:
revapp, selectsThey will be analysed ascendingly in the following order:
revapp < selects(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
revapp(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)Induction Base:
revapp(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)Induction Step:
revapp(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
revapp(gen_Cons:Nil2_0(n4_0), Cons(Nil, gen_Cons:Nil2_0(b))) →IH
gen_Cons:Nil2_0(+(+(b, 1), c5_0))We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Types:
selects :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
select :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:NilLemmas:
revapp(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil2_0(x))The following defined symbols remain to be analysed:
selects(12) Obligation:
Innermost TRS:
Rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Types:
selects :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
select :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:NilLemmas:
revapp(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil2_0(x))No more defined symbols left to analyse.