(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
power(x', Cons(x, xs)) → mult(x', power(x', xs))
mult(x', Cons(x, xs)) → add0(x', mult(x', xs))
add0(x', Cons(x, xs)) → Cons(Cons(Nil, Nil), add0(x', xs))
power(x, Nil) → Cons(Nil, Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
power(x', Cons(x, xs)) → mult(x', power(x', xs))
mult(x', Cons(x, xs)) → add0(x', mult(x', xs))
add0(x', Cons(x, xs)) → Cons(Cons(Nil, Nil), add0(x', xs))
power(x, Nil) → Cons(Nil, Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
power(x', Cons(xs)) → mult(x', power(x', xs))
mult(x', Cons(xs)) → add0(x', mult(x', xs))
add0(x', Cons(xs)) → Cons(add0(x', xs))
power(x, Nil) → Cons(Nil)
mult(x, Nil) → Nil
add0(x, Nil) → x
goal(x, y) → power(x, y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
power,
mult,
add0They will be analysed ascendingly in the following order:
mult < power
add0 < mult
(8) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
The following defined symbols remain to be analysed:
add0, power, mult
They will be analysed ascendingly in the following order:
mult < power
add0 < mult
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add0(
gen_Cons:Nil2_1(
a),
gen_Cons:Nil2_1(
n4_1)) →
gen_Cons:Nil2_1(
+(
n4_1,
a)), rt ∈ Ω(1 + n4
1)
Induction Base:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) →RΩ(1)
gen_Cons:Nil2_1(a)
Induction Step:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n4_1, 1))) →RΩ(1)
Cons(add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1))) →IH
Cons(gen_Cons:Nil2_1(+(a, c5_1)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
The following defined symbols remain to be analysed:
mult, power
They will be analysed ascendingly in the following order:
mult < power
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mult(
gen_Cons:Nil2_1(
a),
gen_Cons:Nil2_1(
n518_1)) →
gen_Cons:Nil2_1(
*(
n518_1,
a)), rt ∈ Ω(1 + a·n518
12 + n518
1)
Induction Base:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) →RΩ(1)
Nil
Induction Step:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n518_1, 1))) →RΩ(1)
add0(gen_Cons:Nil2_1(a), mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1))) →IH
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(*(c519_1, a))) →LΩ(1 + a·n5181)
gen_Cons:Nil2_1(+(*(n518_1, a), a))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
The following defined symbols remain to be analysed:
power
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
power(
gen_Cons:Nil2_1(
a),
gen_Cons:Nil2_1(
+(
1,
n1170_1))) →
*3_1, rt ∈ Ω(n1170
1)
Induction Base:
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, 0)))
Induction Step:
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, +(n1170_1, 1)))) →RΩ(1)
mult(gen_Cons:Nil2_1(a), power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1)))) →IH
mult(gen_Cons:Nil2_1(a), *3_1)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1))) → *3_1, rt ∈ Ω(n11701)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
(19) BOUNDS(n^3, INF)
(20) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1170_1))) → *3_1, rt ∈ Ω(n11701)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
(22) BOUNDS(n^3, INF)
(23) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n518_1)) → gen_Cons:Nil2_1(*(n518_1, a)), rt ∈ Ω(1 + a·n51812 + n5181)
(25) BOUNDS(n^3, INF)
(26) Obligation:
Innermost TRS:
Rules:
power(
x',
Cons(
xs)) →
mult(
x',
power(
x',
xs))
mult(
x',
Cons(
xs)) →
add0(
x',
mult(
x',
xs))
add0(
x',
Cons(
xs)) →
Cons(
add0(
x',
xs))
power(
x,
Nil) →
Cons(
Nil)
mult(
x,
Nil) →
Niladd0(
x,
Nil) →
xgoal(
x,
y) →
power(
x,
y)
Types:
power :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
mult :: Cons:Nil → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
gen_Cons:Nil2_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
Generator Equations:
gen_Cons:Nil2_1(0) ⇔ Nil
gen_Cons:Nil2_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_1(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) → gen_Cons:Nil2_1(+(n4_1, a)), rt ∈ Ω(1 + n41)
(28) BOUNDS(n^1, INF)