(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

ordered(Cons(x', Cons(x, xs))) → ordered[Ite](<(x', x), Cons(x', Cons(x, xs)))
ordered(Cons(x, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → ordered(xs)

The (relative) TRS S consists of the following rules:

<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
ordered[Ite](True, Cons(x, xs)) → ordered(xs)
ordered[Ite](False, xs) → False

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
ordered[Ite](True, Cons(z0, z1)) → ordered(z1)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)
Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
<'(0, S(z0)) → c1
<'(z0, 0) → c2
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED[ITE](False, z0) → c4
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
NOTEMPTY(Cons(z0, z1)) → c8
NOTEMPTY(Nil) → c9
GOAL(z0) → c10(ORDERED(z0))
S tuples:

ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
NOTEMPTY(Cons(z0, z1)) → c8
NOTEMPTY(Nil) → c9
GOAL(z0) → c10(ORDERED(z0))
K tuples:none
Defined Rule Symbols:

ordered, notEmpty, goal, <, ordered[Ite]

Defined Pair Symbols:

<', ORDERED[ITE], ORDERED, NOTEMPTY, GOAL

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10

(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

GOAL(z0) → c10(ORDERED(z0))
Removed 5 trailing nodes:

<'(z0, 0) → c2
NOTEMPTY(Nil) → c9
<'(0, S(z0)) → c1
NOTEMPTY(Cons(z0, z1)) → c8
ORDERED[ITE](False, z0) → c4

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
ordered[Ite](True, Cons(z0, z1)) → ordered(z1)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)
Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:

ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
K tuples:none
Defined Rule Symbols:

ordered, notEmpty, goal, <, ordered[Ite]

Defined Pair Symbols:

<', ORDERED[ITE], ORDERED

Compound Symbols:

c, c3, c5, c6, c7

(5) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

ordered[Ite](True, Cons(z0, z1)) → ordered(z1)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:

ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
K tuples:none
Defined Rule Symbols:

<

Defined Pair Symbols:

<', ORDERED[ITE], ORDERED

Compound Symbols:

c, c3, c5, c6, c7

(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
We considered the (Usable) Rules:none
And the Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [2]   
POL(<(x1, x2)) = [5] + [3]x1   
POL(<'(x1, x2)) = 0   
POL(Cons(x1, x2)) = x2   
POL(False) = [3]   
POL(Nil) = [2]   
POL(ORDERED(x1)) = [3]x1   
POL(ORDERED[ITE](x1, x2)) = [3]x2   
POL(S(x1)) = [5]   
POL(True) = [5]   
POL(c(x1)) = x1   
POL(c3(x1)) = x1   
POL(c5(x1, x2)) = x1 + x2   
POL(c6) = 0   
POL(c7) = 0   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:

ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
K tuples:

ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
Defined Rule Symbols:

<

Defined Pair Symbols:

<', ORDERED[ITE], ORDERED

Compound Symbols:

c, c3, c5, c6, c7

(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(<(x1, x2)) = [1]   
POL(<'(x1, x2)) = 0   
POL(Cons(x1, x2)) = [1] + x2   
POL(False) = [5]   
POL(Nil) = 0   
POL(ORDERED(x1)) = [2] + x1   
POL(ORDERED[ITE](x1, x2)) = [1] + x2   
POL(S(x1)) = [2]   
POL(True) = [3]   
POL(c(x1)) = x1   
POL(c3(x1)) = x1   
POL(c5(x1, x2)) = x1 + x2   
POL(c6) = 0   
POL(c7) = 0   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:

<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, z1)) → c3(ORDERED(z1))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:none
K tuples:

ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
Defined Rule Symbols:

<

Defined Pair Symbols:

<', ORDERED[ITE], ORDERED

Compound Symbols:

c, c3, c5, c6, c7

(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(12) BOUNDS(1, 1)