(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ordered(Cons(x', Cons(x, xs))) → ordered[Ite](<(x', x), Cons(x', Cons(x, xs)))
ordered(Cons(x, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → ordered(xs)
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
ordered[Ite](True, Cons(x', Cons(x, xs))) → ordered(xs)
ordered[Ite](False, xs) → False
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ordered(Cons(0, Cons(S(y10_1), xs))) →+ ordered(xs)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs / Cons(0, Cons(S(y10_1), xs))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ordered(Cons(x', Cons(x, xs))) → ordered[Ite](<(x', x), Cons(x', Cons(x, xs)))
ordered(Cons(x, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → ordered(xs)
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
ordered[Ite](True, Cons(x', Cons(x, xs))) → ordered(xs)
ordered[Ite](False, xs) → False
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
ordered(Cons(x', Cons(x, xs))) → ordered[Ite](<(x', x), Cons(x', Cons(x, xs)))
ordered(Cons(x, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → ordered(xs)
<(S(x), S(y)) → <(x, y)
<(0', S(y)) → True
<(x, 0') → False
ordered[Ite](True, Cons(x', Cons(x, xs))) → ordered(xs)
ordered[Ite](False, xs) → False
Types:
ordered :: Cons:Nil → True:False
Cons :: S:0' → Cons:Nil → Cons:Nil
ordered[Ite] :: True:False → Cons:Nil → True:False
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
True :: True:False
notEmpty :: Cons:Nil → True:False
False :: True:False
goal :: Cons:Nil → True:False
S :: S:0' → S:0'
0' :: S:0'
hole_True:False1_0 :: True:False
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ordered,
<They will be analysed ascendingly in the following order:
< < ordered
(8) Obligation:
Innermost TRS:
Rules:
ordered(
Cons(
x',
Cons(
x,
xs))) →
ordered[Ite](
<(
x',
x),
Cons(
x',
Cons(
x,
xs)))
ordered(
Cons(
x,
Nil)) →
Trueordered(
Nil) →
TruenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
ordered(
xs)
<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
Falseordered[Ite](
True,
Cons(
x',
Cons(
x,
xs))) →
ordered(
xs)
ordered[Ite](
False,
xs) →
FalseTypes:
ordered :: Cons:Nil → True:False
Cons :: S:0' → Cons:Nil → Cons:Nil
ordered[Ite] :: True:False → Cons:Nil → True:False
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
True :: True:False
notEmpty :: Cons:Nil → True:False
False :: True:False
goal :: Cons:Nil → True:False
S :: S:0' → S:0'
0' :: S:0'
hole_True:False1_0 :: True:False
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
<, ordered
They will be analysed ascendingly in the following order:
< < ordered
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
<(
gen_S:0'5_0(
n7_0),
gen_S:0'5_0(
+(
1,
n7_0))) →
True, rt ∈ Ω(0)
Induction Base:
<(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) →RΩ(0)
True
Induction Step:
<(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) →RΩ(0)
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) →IH
True
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
ordered(
Cons(
x',
Cons(
x,
xs))) →
ordered[Ite](
<(
x',
x),
Cons(
x',
Cons(
x,
xs)))
ordered(
Cons(
x,
Nil)) →
Trueordered(
Nil) →
TruenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
ordered(
xs)
<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
Falseordered[Ite](
True,
Cons(
x',
Cons(
x,
xs))) →
ordered(
xs)
ordered[Ite](
False,
xs) →
FalseTypes:
ordered :: Cons:Nil → True:False
Cons :: S:0' → Cons:Nil → Cons:Nil
ordered[Ite] :: True:False → Cons:Nil → True:False
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
True :: True:False
notEmpty :: Cons:Nil → True:False
False :: True:False
goal :: Cons:Nil → True:False
S :: S:0' → S:0'
0' :: S:0'
hole_True:False1_0 :: True:False
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → True, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
ordered
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol ordered.
(13) Obligation:
Innermost TRS:
Rules:
ordered(
Cons(
x',
Cons(
x,
xs))) →
ordered[Ite](
<(
x',
x),
Cons(
x',
Cons(
x,
xs)))
ordered(
Cons(
x,
Nil)) →
Trueordered(
Nil) →
TruenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
ordered(
xs)
<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
Falseordered[Ite](
True,
Cons(
x',
Cons(
x,
xs))) →
ordered(
xs)
ordered[Ite](
False,
xs) →
FalseTypes:
ordered :: Cons:Nil → True:False
Cons :: S:0' → Cons:Nil → Cons:Nil
ordered[Ite] :: True:False → Cons:Nil → True:False
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
True :: True:False
notEmpty :: Cons:Nil → True:False
False :: True:False
goal :: Cons:Nil → True:False
S :: S:0' → S:0'
0' :: S:0'
hole_True:False1_0 :: True:False
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → True, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(1) was proven with the following lemma:
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → True, rt ∈ Ω(0)
(15) BOUNDS(1, INF)
(16) Obligation:
Innermost TRS:
Rules:
ordered(
Cons(
x',
Cons(
x,
xs))) →
ordered[Ite](
<(
x',
x),
Cons(
x',
Cons(
x,
xs)))
ordered(
Cons(
x,
Nil)) →
Trueordered(
Nil) →
TruenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs) →
ordered(
xs)
<(
S(
x),
S(
y)) →
<(
x,
y)
<(
0',
S(
y)) →
True<(
x,
0') →
Falseordered[Ite](
True,
Cons(
x',
Cons(
x,
xs))) →
ordered(
xs)
ordered[Ite](
False,
xs) →
FalseTypes:
ordered :: Cons:Nil → True:False
Cons :: S:0' → Cons:Nil → Cons:Nil
ordered[Ite] :: True:False → Cons:Nil → True:False
< :: S:0' → S:0' → True:False
Nil :: Cons:Nil
True :: True:False
notEmpty :: Cons:Nil → True:False
False :: True:False
goal :: Cons:Nil → True:False
S :: S:0' → S:0'
0' :: S:0'
hole_True:False1_0 :: True:False
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → True, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(1) was proven with the following lemma:
<(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → True, rt ∈ Ω(0)
(18) BOUNDS(1, INF)