(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ordered(Cons(x', Cons(x, xs))) → ordered[Ite](<(x', x), Cons(x', Cons(x, xs)))
ordered(Cons(x, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs) → ordered(xs)
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
ordered[Ite](True, Cons(x', Cons(x, xs))) → ordered(xs)
ordered[Ite](False, xs) → False
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
ordered[Ite](True, Cons(z0, Cons(z1, z2))) → ordered(z2)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)
Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
<'(0, S(z0)) → c1
<'(z0, 0) → c2
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED[ITE](False, z0) → c4
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
NOTEMPTY(Cons(z0, z1)) → c8
NOTEMPTY(Nil) → c9
GOAL(z0) → c10(ORDERED(z0))
S tuples:
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
NOTEMPTY(Cons(z0, z1)) → c8
NOTEMPTY(Nil) → c9
GOAL(z0) → c10(ORDERED(z0))
K tuples:none
Defined Rule Symbols:
ordered, notEmpty, goal, <, ordered[Ite]
Defined Pair Symbols:
<', ORDERED[ITE], ORDERED, NOTEMPTY, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0) → c10(ORDERED(z0))
Removed 5 trailing nodes:
NOTEMPTY(Nil) → c9
ORDERED[ITE](False, z0) → c4
NOTEMPTY(Cons(z0, z1)) → c8
<'(0, S(z0)) → c1
<'(z0, 0) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
ordered[Ite](True, Cons(z0, Cons(z1, z2))) → ordered(z2)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)
Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
K tuples:none
Defined Rule Symbols:
ordered, notEmpty, goal, <, ordered[Ite]
Defined Pair Symbols:
<', ORDERED[ITE], ORDERED
Compound Symbols:
c, c3, c5, c6, c7
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
ordered[Ite](True, Cons(z0, Cons(z1, z2))) → ordered(z2)
ordered[Ite](False, z0) → False
ordered(Cons(z0, Cons(z1, z2))) → ordered[Ite](<(z0, z1), Cons(z0, Cons(z1, z2)))
ordered(Cons(z0, Nil)) → True
ordered(Nil) → True
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → ordered(z0)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
K tuples:none
Defined Rule Symbols:
<
Defined Pair Symbols:
<', ORDERED[ITE], ORDERED
Compound Symbols:
c, c3, c5, c6, c7
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
We considered the (Usable) Rules:none
And the Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(<(x1, x2)) = [1] + [2]x1 + [4]x2
POL(<'(x1, x2)) = 0
POL(Cons(x1, x2)) = x2
POL(False) = [4]
POL(Nil) = [1]
POL(ORDERED(x1)) = [2]x1
POL(ORDERED[ITE](x1, x2)) = [2]x2
POL(S(x1)) = [3]
POL(True) = [2]
POL(c(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6) = 0
POL(c7) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
K tuples:
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
Defined Rule Symbols:
<
Defined Pair Symbols:
<', ORDERED[ITE], ORDERED
Compound Symbols:
c, c3, c5, c6, c7
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(<(x1, x2)) = [3] + [3]x1 + [4]x2
POL(<'(x1, x2)) = 0
POL(Cons(x1, x2)) = [3] + x2
POL(False) = [2]
POL(Nil) = 0
POL(ORDERED(x1)) = [5] + [5]x1
POL(ORDERED[ITE](x1, x2)) = [1] + [5]x2
POL(S(x1)) = [5] + x1
POL(True) = [2]
POL(c(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6) = 0
POL(c7) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
Tuples:
<'(S(z0), S(z1)) → c(<'(z0, z1))
ORDERED[ITE](True, Cons(z0, Cons(z1, z2))) → c3(ORDERED(z2))
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
S tuples:none
K tuples:
ORDERED(Cons(z0, Nil)) → c6
ORDERED(Nil) → c7
ORDERED(Cons(z0, Cons(z1, z2))) → c5(ORDERED[ITE](<(z0, z1), Cons(z0, Cons(z1, z2))), <'(z0, z1))
Defined Rule Symbols:
<
Defined Pair Symbols:
<', ORDERED[ITE], ORDERED
Compound Symbols:
c, c3, c5, c6, c7
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)